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Conjecture (Barrington ‘89)
MAJORITY ¢ ACCO.
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Definition (ACC")
» Polynomial size.
» Constant depth.
» Containing AND, OR, NOT and MOD,,, gates.
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These techniques seem insufficient for MAJORITY ¢ ACCC.
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Definition (Torus Polynomial Approximation (BHLR '19))

P is a torus polynomial e-approximating f if, for each a, there is
some Z(a) € Z, P(a) is within € of Z(a) + f(a)
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Trivial upper bound: degree n for any f.

Theorem (BHLR ‘19)

All functions in ACC® have polylog-degree torus approximations
with inverse-polynomial error.
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Theorem (BHLR ‘19)

Fore = 20%, any symmetric torus polynomial e-approximating
MAJORITY must have degree ) (\/n).

Conjecture (BHLR '19)

For e = any torus polynomial e-approximating MAJORITY

must have degree O (/n).

1
20n’
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Linear Programming Approach

» Goal: Any P that c-approximates f has degree more than d.
» For any a € {0,1}", P(a) is linear combination of coefficients.
» We want for some Z(a) € Z:

f(a)

—— —e<Pla) < Z(a)+ 5
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» For each Z: {0,1}" — Z, obtain a linear program.
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Goal: Any P that e-approximates f has degree more than d.
For any a € {0,1}", P(a) is linear combination of coefficients.
We want for some Z(a) € Z:

Z(a)+f<2“)—5gp(a)g2(a)+f(2a)+s

For each Z : {0,1}" — Z, obtain a linear program.
A torus polynomial exists iff some linear program is feasible.

Lower bound iff programs are infeasible iff duals are feasible.
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The Family of Duals

» For each Z, find v € nullspace(M (n,d)), such that :

/
(z+1.2)| >l

» M (n,d) has evaluations of monomials with degree at most d.
» Extends the method of dual polynomials to torus polynomials.

» Allows for incremental progress.



Our Contribution

> |Z(a)| < e 290 (dljll).



Our Contribution

d+1
> [Z(a)| < 201 (J9).
» Resolves all but a finite subfamily.



Our Contribution

> [Z(a)| < 201 (J9).
» Resolves all but a finite subfamily.

» Fix Z(a) up to |a| < d?, other Z(a) are uniquely determined.



Our Contribution

> |Z(a) e 2t (J1).
» Resolves all but a finite subfamily.

» Fix Z(a) up to |a| < d?, other Z(a) are uniquely determined.
» Reduces the degrees of freedom if d < \/n.



Our Contribution

> [Z(a) < e- 200 (o).
» Resolves all but a finite subfamily.

» Fix Z(a) up to |a| < d?, other Z(a) are uniquely determined.
» Reduces the degrees of freedom if d < \/n.

» New nullspace vectors supported on a single Hamming layer.



> [Z(a)| <e- 204 ().
» Resolves all but a finite subfamily.

» Fix Z(a) up to |a|] < d?, other Z(a) are uniquely determined.
» Reduces the degrees of freedom if d < /n.

» New nullspace vectors supported on a single Hamming layer.
» Asymmetric construction, unlike previously known.
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> O (log (%))—degree lower bound for torus polynomials
e-approximating AND.
» No error-reduction if MAJORITY requires large degree.
» Fore= ﬁ, any symmetric torus polynomial e-approximating
AND must have degree 2 (v/n).
» Symmetric torus polynomials are weaker.
» Error-degree trade-off for symmetric torus polynomials
approximating MAJORITY.
» Strengthens corresponding result from [BHLR ‘19].
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» Continue the program to find feasible solutions for more Zs.
» Characterize “solved” Zs using known solutions.
» Find more possible solutions.
» Bridge the lower-upper bound gap for AND.
» Current proof uses only one solution.
» Use multiple solutions for stronger lower bound.

» Error-degree trade-off for symmetric torus polynomials
approximating AND.

» Use lattice theory.
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Questions?
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