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Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)

▶ Polynomial size.
▶ Constant depth.
▶ Containing AND, OR, NOT and MODm gates.

2



Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)

▶ Polynomial size.
▶ Constant depth.
▶ Containing AND, OR, NOT and MODm gates.

2



Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)

▶ Polynomial size.
▶ Constant depth.
▶ Containing AND, OR, NOT and MODm gates.

2



Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)
▶ Polynomial size.

▶ Constant depth.
▶ Containing AND, OR, NOT and MODm gates.

2



Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)
▶ Polynomial size.
▶ Constant depth.

▶ Containing AND, OR, NOT and MODm gates.

2



Main Goal

Conjecture (Barrington ‘89)
MAJORITY /∈ ACC0.

AND

AND OR NOT

x1 x2 xn

Definition (ACC0)
▶ Polynomial size.
▶ Constant depth.
▶ Containing AND, OR, NOT and MODm gates.

2



Previous Progress

P AC0[p] (allow MODp)
MOD6 (Smolensky ‘87)

MAJORITY (Razborov ‘87)

ACC0 (allow MODm)NQP
Williams ‘14
Murray, Williams ‘19

?

These techniques seem insufficient for MAJORITY /∈ ACC0.
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Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR ‘19))
P is a torus polynomial ε-approximating f if,

for each a, there is
some Z(a) ∈ Z, P (a) is within ε of Z(a) + f(a)
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Trivial upper bound: degree n for any f .

Theorem (BHLR ‘19)
All functions in ACC0 have polylog-degree torus approximations

with inverse-polynomial error.
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Why Torus Polynomials

Theorem (BHLR ‘19)
For ε = 1

20n , any symmetric torus polynomial ε-approximating
MAJORITY must have degree Ω̃ (

√
n).

Conjecture (BHLR ‘19)
For ε = 1

20n , any torus polynomial ε-approximating MAJORITY
must have degree Ω̃ (

√
n).
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Linear Programming Approach

▶ Goal: Any P that ε-approximates f has degree more than d.

▶ For any a ∈ {0, 1}n, P (a) is linear combination of coefficients.
▶ We want for some Z(a) ∈ Z:

Z(a) + f(a)
2 − ε ≤ P (a) ≤ Z(a) + f(a)

2 + ε

▶ For each Z : {0, 1}n → Z, obtain a linear program.
▶ A torus polynomial exists iff some linear program is feasible.
▶ Lower bound iff programs are infeasible iff duals are feasible.
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The Family of Duals

▶ For each Z, find γ ∈ nullspace(M(n, d)), such that :∣∣∣∣〈Z + f

2 , γ

〉∣∣∣∣ > ε∥γ∥1

▶ M(n, d) has evaluations of monomials with degree at most d.
▶ Extends the method of dual polynomials to torus polynomials.
▶ Allows for incremental progress.

7



The Family of Duals

▶ For each Z, find γ ∈ nullspace(M(n, d)), such that :∣∣∣∣〈Z + f

2 , γ

〉∣∣∣∣ > ε∥γ∥1

▶ M(n, d) has evaluations of monomials with degree at most d.

▶ Extends the method of dual polynomials to torus polynomials.
▶ Allows for incremental progress.

7



The Family of Duals

▶ For each Z, find γ ∈ nullspace(M(n, d)), such that :∣∣∣∣〈Z + f

2 , γ

〉∣∣∣∣ > ε∥γ∥1

▶ M(n, d) has evaluations of monomials with degree at most d.
▶ Extends the method of dual polynomials to torus polynomials.

▶ Allows for incremental progress.

7



The Family of Duals

▶ For each Z, find γ ∈ nullspace(M(n, d)), such that :∣∣∣∣〈Z + f

2 , γ

〉∣∣∣∣ > ε∥γ∥1

▶ M(n, d) has evaluations of monomials with degree at most d.
▶ Extends the method of dual polynomials to torus polynomials.
▶ Allows for incremental progress.

7



Our Contribution

▶ |Z(a)| ≤ ε · 2d+1 ·
( |a|

d+1
)
.

▶ Resolves all but a finite subfamily.
▶ Fix Z(a) up to |a| ≲ d2, other Z(a) are uniquely determined.

▶ Reduces the degrees of freedom if d ≪
√

n.

▶ New nullspace vectors supported on a single Hamming layer.

▶ Asymmetric construction, unlike previously known.
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Our Results

▶ Ω
(
log

(
1
ε

))
-degree lower bound for torus polynomials

ε-approximating AND.

▶ No error-reduction if MAJORITY requires large degree.
▶ For ε = 1

20n , any symmetric torus polynomial ε-approximating
AND must have degree Ω̃ (

√
n).

▶ Symmetric torus polynomials are weaker.

▶ Error-degree trade-off for symmetric torus polynomials
approximating MAJORITY.

▶ Strengthens corresponding result from [BHLR ‘19].
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Future Directions

▶ Continue the program to find feasible solutions for more Zs.

▶ Characterize “solved” Zs using known solutions.
▶ Find more possible solutions.

▶ Bridge the lower-upper bound gap for AND.

▶ Current proof uses only one solution.
▶ Use multiple solutions for stronger lower bound.

▶ Error-degree trade-off for symmetric torus polynomials
approximating AND.

▶ Use lattice theory.
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Thank you

Questions?
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