

Lower Bounds and Separations for Torus Polynomials

V. Krishan¹ Sundar Vishwanathan²

¹TCS, IMSc Chennai

²CSE, IIT Bombay

Main Goal

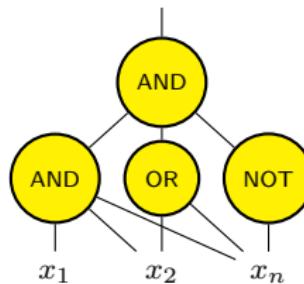
Conjecture (Barrington '89)

MAJORITY $\notin \text{ACC}^0$.

Main Goal

Conjecture (Barrington '89)

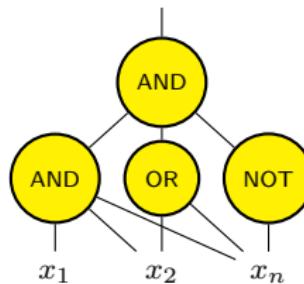
MAJORITY $\notin \text{ACC}^0$.



Main Goal

Conjecture (Barrington '89)

MAJORITY $\notin \text{ACC}^0$.

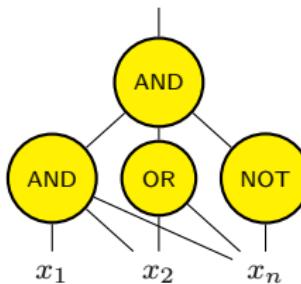


Definition (ACC^0)

Main Goal

Conjecture (Barrington '89)

MAJORITY $\notin \text{ACC}^0$.



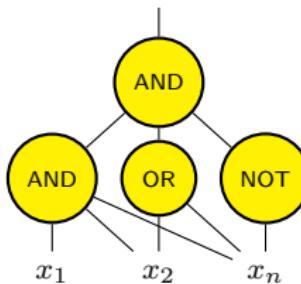
Definition (ACC^0)

- ▶ Polynomial size.

Main Goal

Conjecture (Barrington '89)

MAJORITY $\notin \text{ACC}^0$.



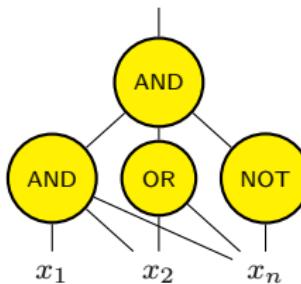
Definition (ACC^0)

- ▶ Polynomial size.
- ▶ Constant depth.

Main Goal

Conjecture (Barrington '89)

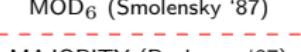
MAJORITY $\notin \text{ACC}^0$.



Definition (ACC^0)

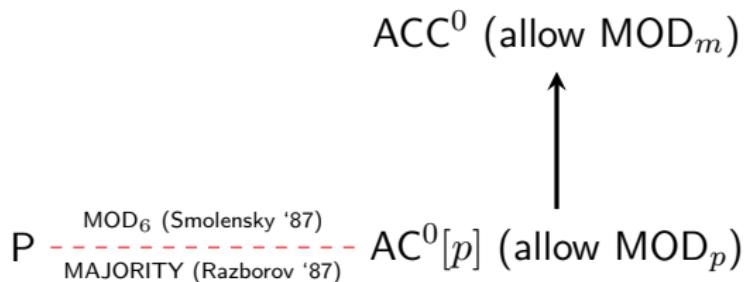
- ▶ Polynomial size.
- ▶ Constant depth.
- ▶ Containing AND, OR, NOT and MOD_m gates.

Previous Progress

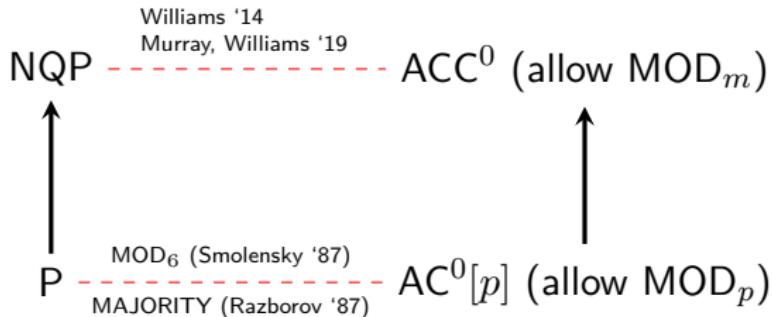
P  $AC^0[p]$ (allow MOD_p)

MOD₆ (Smolensky '87)
MAJORITY (Razborov '87)

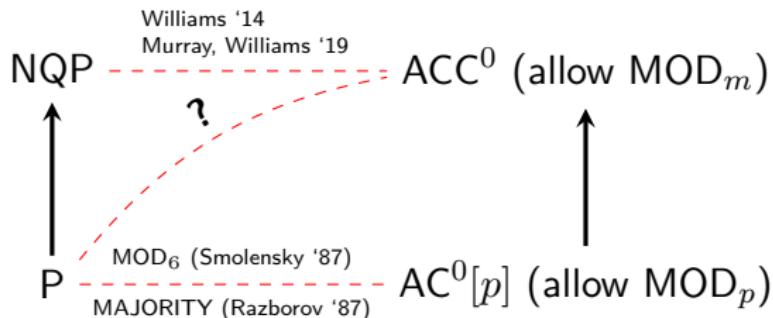
Previous Progress



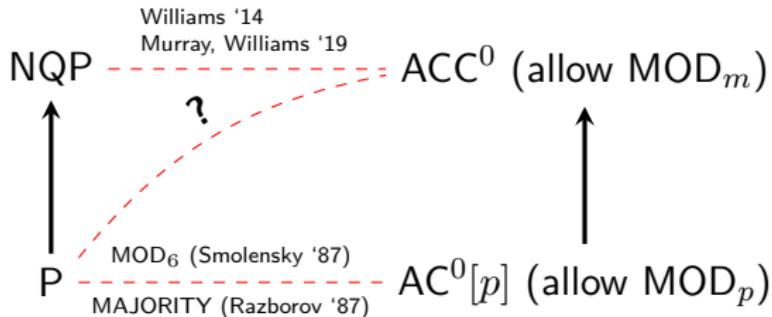
Previous Progress



Previous Progress



Previous Progress



These techniques seem insufficient for $\text{MAJORITY} \notin \text{ACC}^0$.

Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if,

Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if, for each a ,

Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if, for each a , there is some $Z(a) \in \mathbb{Z}$,

Distinguisher: Torus Polynomials

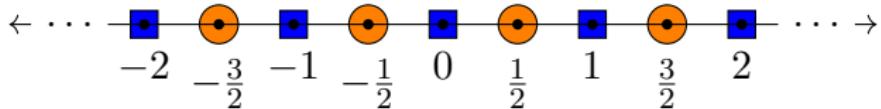
Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if, for each a , there is some $Z(a) \in \mathbb{Z}$, $P(a)$ is within ε of $Z(a) + \frac{f(a)}{2}$.

Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

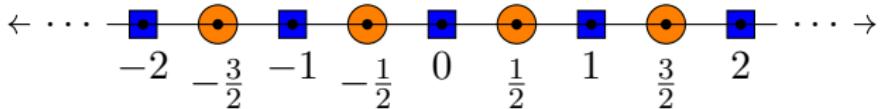
P is a *torus polynomial* ε -approximating f if, for each a , there is some $Z(a) \in \mathbb{Z}$, $P(a)$ is within ε of $Z(a) + \frac{f(a)}{2}$.



Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if, for each a , there is some $Z(a) \in \mathbb{Z}$, $P(a)$ is within ε of $Z(a) + \frac{f(a)}{2}$.

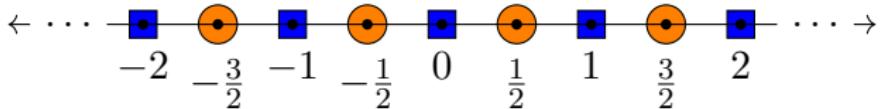


Trivial upper bound: degree n for any f .

Distinguisher: Torus Polynomials

Definition (Torus Polynomial Approximation (BHLR '19))

P is a *torus polynomial* ε -approximating f if, for each a , there is some $Z(a) \in \mathbb{Z}$, $P(a)$ is within ε of $Z(a) + \frac{f(a)}{2}$.



Trivial upper bound: degree n for any f .

Theorem (BHLR '19)

All functions in ACC^0 have polylog-degree torus approximations with inverse-polynomial error.

Why Torus Polynomials

Theorem (BHLR '19)

For $\varepsilon = \frac{1}{20n}$, any symmetric torus polynomial ε -approximating MAJORITY must have degree $\tilde{\Omega}(\sqrt{n})$.

Why Torus Polynomials

Theorem (BHLR '19)

For $\varepsilon = \frac{1}{20n}$, any symmetric torus polynomial ε -approximating MAJORITY must have degree $\tilde{\Omega}(\sqrt{n})$.

Conjecture (BHLR '19)

For $\varepsilon = \frac{1}{20n}$, any torus polynomial ε -approximating MAJORITY must have degree $\tilde{\Omega}(\sqrt{n})$.

Linear Programming Approach

- Goal: Any P that ε -approximates f has degree more than d .

Linear Programming Approach

- ▶ Goal: Any P that ε -approximates f has degree more than d .
- ▶ For any $a \in \{0, 1\}^n$, $P(a)$ is linear combination of coefficients.

Linear Programming Approach

- ▶ Goal: Any P that ε -approximates f has degree more than d .
- ▶ For any $a \in \{0, 1\}^n$, $P(a)$ is linear combination of coefficients.
- ▶ We want for some $Z(a) \in \mathbb{Z}$:

$$Z(a) + \frac{f(a)}{2} - \varepsilon \leq P(a) \leq Z(a) + \frac{f(a)}{2} + \varepsilon$$

Linear Programming Approach

- ▶ Goal: Any P that ε -approximates f has degree more than d .
- ▶ For any $a \in \{0, 1\}^n$, $P(a)$ is linear combination of coefficients.
- ▶ We want for some $Z(a) \in \mathbb{Z}$:

$$Z(a) + \frac{f(a)}{2} - \varepsilon \leq P(a) \leq Z(a) + \frac{f(a)}{2} + \varepsilon$$

- ▶ For each $Z : \{0, 1\}^n \rightarrow \mathbb{Z}$, obtain a linear program.

Linear Programming Approach

- ▶ Goal: Any P that ε -approximates f has degree more than d .
- ▶ For any $a \in \{0, 1\}^n$, $P(a)$ is linear combination of coefficients.
- ▶ We want for some $Z(a) \in \mathbb{Z}$:

$$Z(a) + \frac{f(a)}{2} - \varepsilon \leq P(a) \leq Z(a) + \frac{f(a)}{2} + \varepsilon$$

- ▶ For each $Z : \{0, 1\}^n \rightarrow \mathbb{Z}$, obtain a linear program.
- ▶ A torus polynomial exists iff some linear program is feasible.

Linear Programming Approach

- ▶ Goal: Any P that ε -approximates f has degree more than d .
- ▶ For any $a \in \{0, 1\}^n$, $P(a)$ is linear combination of coefficients.
- ▶ We want for some $Z(a) \in \mathbb{Z}$:

$$Z(a) + \frac{f(a)}{2} - \varepsilon \leq P(a) \leq Z(a) + \frac{f(a)}{2} + \varepsilon$$

- ▶ For each $Z : \{0, 1\}^n \rightarrow \mathbb{Z}$, obtain a linear program.
- ▶ A torus polynomial exists iff some linear program is feasible.
- ▶ Lower bound iff programs are infeasible iff duals are feasible.

The Family of Duals

- For each Z , find $\gamma \in \text{nullspace}(M(n, d))$, such that :

$$\left| \left\langle Z + \frac{f}{2}, \gamma \right\rangle \right| > \varepsilon \|\gamma\|_1$$

The Family of Duals

- For each Z , find $\gamma \in \text{nullspace}(M(n, d))$, such that :

$$\left| \left\langle Z + \frac{f}{2}, \gamma \right\rangle \right| > \varepsilon \|\gamma\|_1$$

- $M(n, d)$ has evaluations of monomials with degree at most d .

The Family of Duals

- For each Z , find $\gamma \in \text{nullspace}(M(n, d))$, such that :

$$\left| \left\langle Z + \frac{f}{2}, \gamma \right\rangle \right| > \varepsilon \|\gamma\|_1$$

- $M(n, d)$ has evaluations of monomials with degree at most d .
- Extends the *method of dual polynomials* to torus polynomials.

The Family of Duals

- ▶ For each Z , find $\gamma \in \text{nullspace}(M(n, d))$, such that :

$$\left| \left\langle Z + \frac{f}{2}, \gamma \right\rangle \right| > \varepsilon \|\gamma\|_1$$

- ▶ $M(n, d)$ has evaluations of monomials with degree at most d .
- ▶ Extends the *method of dual polynomials* to torus polynomials.
- ▶ Allows for incremental progress.

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}.$

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}$.
 - ▶ Resolves all but a finite subfamily.

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}$.
 - ▶ Resolves all but a finite subfamily.
- ▶ Fix $Z(a)$ up to $|a| \lesssim d^2$, other $Z(a)$ are uniquely determined.

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}$.
 - ▶ Resolves all but a finite subfamily.
- ▶ Fix $Z(a)$ up to $|a| \lesssim d^2$, other $Z(a)$ are uniquely determined.
 - ▶ Reduces the degrees of freedom if $d \ll \sqrt{n}$.

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}$.
 - ▶ Resolves all but a finite subfamily.
- ▶ Fix $Z(a)$ up to $|a| \lesssim d^2$, other $Z(a)$ are uniquely determined.
 - ▶ Reduces the degrees of freedom if $d \ll \sqrt{n}$.
- ▶ New nullspace vectors supported on a single Hamming layer.

Our Contribution

- ▶ $|Z(a)| \leq \varepsilon \cdot 2^{d+1} \cdot \binom{|a|}{d+1}$.
 - ▶ Resolves all but a finite subfamily.
- ▶ Fix $Z(a)$ up to $|a| \lesssim d^2$, other $Z(a)$ are uniquely determined.
 - ▶ Reduces the degrees of freedom if $d \ll \sqrt{n}$.
- ▶ New nullspace vectors supported on a single Hamming layer.
 - ▶ Asymmetric construction, unlike previously known.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.
 - ▶ No error-reduction if MAJORITY requires large degree.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.
 - ▶ No error-reduction if MAJORITY requires large degree.
- ▶ For $\varepsilon = \frac{1}{20n}$, any *symmetric* torus polynomial ε -approximating AND must have degree $\tilde{\Omega}(\sqrt{n})$.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.
 - ▶ No error-reduction if MAJORITY requires large degree.
- ▶ For $\varepsilon = \frac{1}{20n}$, any *symmetric* torus polynomial ε -approximating AND must have degree $\tilde{\Omega}(\sqrt{n})$.
 - ▶ Symmetric torus polynomials are weaker.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.
 - ▶ No error-reduction if MAJORITY requires large degree.
- ▶ For $\varepsilon = \frac{1}{20n}$, any *symmetric* torus polynomial ε -approximating AND must have degree $\tilde{\Omega}(\sqrt{n})$.
 - ▶ Symmetric torus polynomials are weaker.
- ▶ Error-degree trade-off for symmetric torus polynomials approximating MAJORITY.

Our Results

- ▶ $\Omega\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ -degree lower bound for torus polynomials ε -approximating AND.
 - ▶ No error-reduction if MAJORITY requires large degree.
- ▶ For $\varepsilon = \frac{1}{20n}$, any *symmetric* torus polynomial ε -approximating AND must have degree $\tilde{\Omega}(\sqrt{n})$.
 - ▶ Symmetric torus polynomials are weaker.
- ▶ Error-degree trade-off for symmetric torus polynomials approximating MAJORITY.
 - ▶ Strengthens corresponding result from [BHLR '19].

Future Directions

- Continue the program to find feasible solutions for more Z s.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.
- ▶ Bridge the lower-upper bound gap for AND.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.
- ▶ Bridge the lower-upper bound gap for AND.
 - ▶ Current proof uses only one solution.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.
- ▶ Bridge the lower-upper bound gap for AND.
 - ▶ Current proof uses only one solution.
 - ▶ Use multiple solutions for stronger lower bound.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.
- ▶ Bridge the lower-upper bound gap for AND.
 - ▶ Current proof uses only one solution.
 - ▶ Use multiple solutions for stronger lower bound.
- ▶ Error-degree trade-off for symmetric torus polynomials approximating AND.

Future Directions

- ▶ Continue the program to find feasible solutions for more Z s.
 - ▶ Characterize “solved” Z s using known solutions.
 - ▶ Find more possible solutions.
- ▶ Bridge the lower-upper bound gap for AND.
 - ▶ Current proof uses only one solution.
 - ▶ Use multiple solutions for stronger lower bound.
- ▶ Error-degree trade-off for symmetric torus polynomials approximating AND.
 - ▶ Use lattice theory.

Thank you

Questions?