Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction Our Results Proof Conclusion

Upper Bound for Torus Polynomials

Vaibhav Krishan

Computer Science and Engineering, IIT Bombay

The 16th International Computer Science Symposium in Russia, Sochi, Russia 29 June 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

1 Introduction

2 Our Results

3 Proof

4 Conclusion

Boolean Circuits

Boolean Circuits

size: # of gates/wires depth: length of longest path \mathcal{G} : allowed gates

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (AC⁰)

 $\mathcal{G} = \{ \land, \lor, \neg \}.$

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (AC⁰)

$$\mathcal{G} = \{\land, \lor, \neg\}.$$

Theorem ([FSS84, Ajt83, Yao85, Hås87])

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\oplus \notin AC^0$.

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (AC⁰)

$$\mathcal{G} = \{\land,\lor,\urcorner\}$$

Theorem ([FSS84, Ajt83, Yao85, Hås87])

 $\oplus \notin \mathsf{AC}^{\mathsf{0}}.$

Definition $(AC^0[p])$

 $\mathcal{G} = \{ \land, \lor, \neg, \mathsf{MOD}_p \}$, p a prime.

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (AC⁰)

$$\mathcal{G} = \{\land,\lor,\urcorner\}$$

 $\oplus \notin AC^0$.

Theorem ([FSS84, Ajt83, Yao85, Hås87])

Definition (AC⁰[*p*])

 $\mathcal{G} = \{ \land, \lor, \neg, \mathsf{MOD}_p \}$, *p* a prime.

Theorem ([Raz87, Smo87])

 $MAJ \notin AC^{0}[p].$

ACC Lower Bounds

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results Proof

Definition (ACC)

$$\mathcal{G} = \{\land, \lor, \neg, \mathsf{MOD}_m\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

ACC Lower Bounds

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (ACC)

(

$$\mathcal{G} = \{\wedge, \lor, \neg, \mathsf{MOD}_m\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem ([Wil14])

 $\mathsf{NEXP} \not\subset \mathsf{ACC}.$

Torus Polynomials

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (Torus Polynomial)

 $P(x_1, \ldots, x_n) \in \mathbb{R}[X_1, \ldots, X_n]$ is a torus polynomial that ε -approximates f if

$$P(x) - f(x)/2 \in [N(x) - \varepsilon, N(x) + \varepsilon], N(x) \in \mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Torus Polynomials

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (Torus Polynomial)

 $P(x_1, \ldots, x_n) \in \mathbb{R}[X_1, \ldots, X_n]$ is a torus polynomial that ε -approximates f if

$$P(x) - f(x)/2 \in [N(x) - \varepsilon, N(x) + \varepsilon], N(x) \in \mathbb{Z}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

 $deg_{\varepsilon}(f)$ smallest degree of torus polynomial that ε -approximates f.

Torus Polynomials

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof Conclusion

Definition (Torus Polynomial)

 $P(x_1, \ldots, x_n) \in \mathbb{R}[X_1, \ldots, X_n]$ is a torus polynomial that ε -approximates f if

$$P(x) - f(x)/2 \in [N(x) - \varepsilon, N(x) + \varepsilon], N(x) \in \mathbb{Z}$$

 $deg_{\varepsilon}(f)$ smallest degree of torus polynomial that ε -approximates f.

Theorem ([BHLR18])

Let $f \in ACC$ and $\varepsilon = n^{-O(1)}$. Then $deg_{\varepsilon}(f) \leq (\log(n))^{O(1)}$.

Outline

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results Proof

Introduction

2 Our Results

3 Proof

4 Conclusion

(ロ) (国) (E) (E) (E) (O)((C)

MidBit^+

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results Proof

Conclusion

Definition (MidBit)

$$\begin{array}{l} \mathsf{MidBit}: \{0,1\}^n \to \{0,1\}, \ell = \lfloor \log_2(n) \rfloor + 1 \\ bin\left(\sum_{i=1}^n x_i\right) = b_{\ell-1} \dots b_{\lfloor \ell/2 \rfloor + 1} \mathsf{MidBit}(x) b_{\lfloor \ell/2 \rfloor - 1} \dots b_0 \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

MidBit^+

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results
Proof

Definition (MidBit)

$$\mathsf{MidBit}: \{0,1\}^n \to \{0,1\}, \ell = \lfloor \log_2(n) \rfloor + 1$$

$$bin\left(\sum_{i=1}^n x_i\right) = b_{\ell-1} \dots b_{\lfloor \ell/2 \rfloor + 1} \mathsf{MidBit}(x) b_{\lfloor \ell/2 \rfloor - 1} \dots b_0$$

Definition (MidBit⁺)

	Power of MidBit ⁺
Upper Bound for Torus Polynomials Vaibhav Krishan	
Introduction Our Results Proof Conclusion	Theorem (GKT'92) ACC \subseteq MidBit ⁺

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Power of MidBit⁺ Upper Bound for Torus Polynomials Theorem (GKT'92) Our Results $\mathsf{ACC} \subset \mathsf{MidBit}^+$ Lemma

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\mathsf{MAJ} \in \mathsf{MidBit}^+$

Upper Bound for Torus Polynomials

Upper Bound for Torus Polynomials

Theorem

Vaibhav Krishan

Introduction

Our Results Proof

Let $\varepsilon < 1/8$. $\deg_{\varepsilon}(f) \leq (\log(n))^{O(1)} \implies f \in \mathsf{MidBit}^+$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Upper Bound for Torus Polynomials

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Theorem Let $\varepsilon < 1/8$. $deg_{\varepsilon}(f) \leq (\log(n))^{O(1)} \implies f \in MidBit^+$

Introduction

Our Results Proof

Theorem

Let $\varepsilon < 1/8$. Let $\deg_{\varepsilon}(f) = d$. Then, there is MidBit⁺ circuit computing f, of the following form:

- fan-in of each AND gate is bounded by d,
- fan-in of the MidBit gate is bounded by 2^{2k-1} where $2^k = (d+1)n^d/\varepsilon$,
- for x ∈ {0,1}ⁿ, let A(x) be the number of AND gates that output 1. Then A(x) ≡ f(x)2^{k-1} + E(x) mod 2^k, where E(x) ≤ 4ε2^k.

Outline

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

Introduction

2 Our Results

3 Proof

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Proof

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Let $P = \sum_{\alpha} c_{\alpha} X^{\alpha} \varepsilon$ -approximate f. $P(x) \in [N(x) + f(x)/2 - \varepsilon, N(x) + f(x)/2 + \varepsilon]$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Let $P = \sum_{\alpha} c_{\alpha} X^{\alpha} \varepsilon$ -approximate f. $P(x) \in [N(x) + f(x)/2 - \varepsilon, N(x) + f(x)/2 + \varepsilon]$

• Take
$$P_{pos} = P + \varepsilon$$
.
 $P_{pos}(x) \in [N(x) + f(x)/2, N(x) + f(x)/2 + 2 * \varepsilon]$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Let $P = \sum_{\alpha} c_{\alpha} X^{\alpha} \varepsilon$ -approximate f. $P(x) \in [N(x) + f(x)/2 - \varepsilon, N(x) + f(x)/2 + \varepsilon]$

• Take
$$P_{pos} = P + \varepsilon$$
.
 $P_{pos}(x) \in [N(x) + f(x)/2, N(x) + f(x)/2 + 2 * \varepsilon]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$bin(P_{pos}(x)) = \dots 101.f(x)0110010\dots$$

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Choose a k. For each c_{α} , calculate $q_{\alpha} \in \mathbb{Z}$ such that $\left|c_{\alpha} - \frac{q_{\alpha}}{2^{k}}\right| \leq \frac{1}{2^{k}}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Choose a k. For each c_{α} , calculate $q_{\alpha} \in \mathbb{Z}$ such that $\left|c_{\alpha} - \frac{q_{\alpha}}{2^{k}}\right| \leq \frac{1}{2^{k}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $P_{disc}(x) = \sum_{\alpha} q_{\alpha}/2^{k} X^{\alpha}$. $bin(P_{disc}(x)) = \dots 101.f(x)0110010\dots$

Upper Bound for Torus Polynomials

Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

• Choose a k. For each c_{α} , calculate $q_{\alpha} \in \mathbb{Z}$ such that $\left|c_{\alpha} - \frac{q_{\alpha}}{2^{k}}\right| \leq \frac{1}{2^{k}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $P_{disc}(x) = \sum_{\alpha} q_{\alpha}/2^{k} X^{\alpha}$. $bin(P_{disc}(x)) = \dots 101.f(x)0110010\dots$
- $P_{int}(x) = 2^k P_{disc}(x) = \sum_{\alpha} q_{\alpha} X^{\alpha}$ $bin(P_{int}(x)) = \dots 101 f(x) 0110$

Upper Bound for Torus Polynomials

Vaibhav Krishan

- Introduction
- Our Results
- Proof
- Conclusion

• Choose a k. For each c_{α} , calculate $q_{\alpha} \in \mathbb{Z}$ such that $\left|c_{\alpha} - \frac{q_{\alpha}}{2^{k}}\right| \leq \frac{1}{2^{k}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $P_{disc}(x) = \sum_{\alpha} q_{\alpha}/2^{k} X^{\alpha}$. $bin(P_{disc}(x)) = \dots 101.f(x)0110010\dots$
- $P_{int}(x) = 2^k P_{disc}(x) = \sum_{\alpha} q_{\alpha} X^{\alpha}$ $bin(P_{int}(x)) = \dots 101 f(x) 0110$
- Convert to MidBit⁺.

Parity over Torus Polynomials

Upper Bound for Torus Polynomials

Proof

Theorem

L

Let
$$\deg_{\varepsilon_1}(f_1) = d_1$$
 and $\deg_{\varepsilon_2}(f_2) = d_2$. Then
 $\deg_{\varepsilon_1+\varepsilon_2}(f_1 \oplus f_2) \leq \max(d_1, d_2)$

・ロト ・四ト ・ヨト ・ヨト

€ 990

Parity over Torus Polynomials

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction

Our Results

Proof

Conclusion

Theorem

Let
$$\deg_{\varepsilon_1}(f_1) = d_1$$
 and $\deg_{\varepsilon_2}(f_2) = d_2$. Then
 $\deg_{\varepsilon_1+\varepsilon_2}(f_1 \oplus f_2) \le \max(d_1, d_2)$

Proof.

a

Let $P_1 \varepsilon_1$ -approximate f_1 and $P_2 \varepsilon_2$ -approximate f_2 . Consider $P_1 + P_2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction Our Results Proof

Conclusion

Introduction

Our Results

3 Proof

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Conclusion

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introductior

Our Result

Proof

Conclusion

• Power of torus polynomials is upper bounded by MidBit⁺.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introductior

Our Result

Proof

Conclusion

• Power of torus polynomials is upper bounded by MidBit⁺.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Torus polynomials are closed under parity.

	Thank You
Upper Bound for Torus Polynomials	Thank You
Vaibhav Krishan	Thank Tou
Introduction	
Our Results	
Proof	
Conclusion	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

References I

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction Our Results Proof Conclusion Miklós Ajtai, Σ¹₁-formulae on finite structures, Annals of pure and applied logic **24** (1983), no. 1, 1–48.

Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao, *Torus polynomials: An algebraic approach to* ACC *lower bounds*, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Merrick Furst, James B Saxe, and Michael Sipser, Parity, circuits, and the polynomial-time hierarchy, Mathematical systems theory 17 (1984), no. 1, 13–27.

Johan Håstad, *Computational limitations of small-depth circuits*, MIT press, 1987.

References II

Upper Bound for Torus Polynomials

Vaibhav Krishan

- Introduction Our Results Proof
- Conclusion

- Alexander A Razborov, *Lower bounds on the size of bounded depth circuits over a complete basis with logical addition*, Mathematical Notes of the Academy of Sciences of the USSR **41** (1987), no. 4, 333–338.
- Roman Smolensky, Algebraic methods in the theory of lower bounds for boolean circuit complexity, Proceedings of the nineteenth annual ACM symposium on Theory of computing, 1987, pp. 77–82.
- Ryan Williams, *Nonuniform* ACC *circuit lower bounds*, Journal of the ACM (JACM) **61** (2014), no. 1, 1–32.

References III

Upper Bound for Torus Polynomials

> Vaibhav Krishan

Introduction Our Results Proof

Conclusion

Andrew Chi-Chih Yao, *Separating the polynomial-time hierarchy by oracles*, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), IEEE, 1985, pp. 1–10.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @