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Boolean Circuits

...

x1 x2 . . . xn

size: # of gates/wires
depth: length of longest path

G: allowed gates
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Early Lower Bounds

Definition (AC0)
G = {∧,∨,¬}.

Theorem ([FSS84, Ajt83, Yao85, Hås87])
⊕ /∈ AC0.

Definition (AC0[p])
G = {∧,∨,¬, MODp}, p a prime.

Theorem ([Raz87, Smo87])
MAJ /∈ AC0[p].
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ACC Lower Bounds

Definition (ACC)
G = {∧,∨,¬, MODm}.

Theorem ([Wil14])
NEXP 6⊂ ACC.
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Torus Polynomials

Definition (Torus Polynomial)
P(x1, . . . , xn) ∈ R[X1, . . . , Xn] is a torus polynomial that
ε-approximates f if

P(x)− f (x)/2 ∈ [N(x)− ε, N(x) + ε], N(x) ∈ Z

degε(f ) smallest degree of torus polynomial that
ε-approximates f .

Theorem ([BHLR18])

Let f ∈ ACC and ε = n−O(1). Then degε(f ) ≤ (log(n))O(1).
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MidBit+

Definition (MidBit)
MidBit : {0, 1}n → {0, 1}, ` = blog2(n)c+ 1
bin (

∑n
i=1 xi ) = b`−1 . . . bb`/2c+1MidBit(x)bb`/2c−1 . . . b0

Definition (MidBit+)

MidBit

AND AND AND. . .

2polylog(n)

polylog(n)
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Power of MidBit+

Theorem (GKT‘92)
ACC ⊆ MidBit+

Lemma
MAJ ∈ MidBit+
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Upper Bound for Torus Polynomials

Theorem
Let ε < 1/8. degε(f ) ≤ (log(n))O(1) =⇒ f ∈ MidBit+

Theorem
Let ε < 1/8. Let degε(f ) = d. Then, there is MidBit+ circuit
computing f , of the following form:

fan-in of each AND gate is bounded by d,
fan-in of the MidBit gate is bounded by 22k−1 where
2k = (d + 1)nd/ε,
for x ∈ {0, 1}n, let A(x) be the number of AND gates that
output 1. Then A(x) ≡ f (x)2k−1 + E (x) mod 2k , where
E (x) ≤ 4ε2k .
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Proof

Let P =
∑
α cαXα ε-approximate f .

P(x) ∈ [N(x) + f (x)/2− ε, N(x) + f (x)/2 + ε]

Take Ppos = P + ε.
Ppos(x) ∈ [N(x) + f (x)/2, N(x) + f (x)/2 + 2 ∗ ε]
bin(Ppos(x)) = . . . 101.f (x)0110010 . . .
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Proof - Continued

Choose a k. For each cα, calculate qα ∈ Z such that∣∣∣cα − qα

2k

∣∣∣ ≤ 1
2k

Pdisc(x) =
∑
α qα/2kXα.

bin(Pdisc(x)) = . . . 101.f (x)0110010 . . .

Pint(x) = 2kPdisc(x) =
∑
α qαXα

bin(Pint(x)) = . . . 101f (x)0110
Convert to MidBit+.
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Parity over Torus Polynomials

Theorem
Let degε1(f1) = d1 and degε2(f2) = d2. Then
degε1+ε2(f1 ⊕ f2) ≤ max(d1, d2)

Proof.
Let P1 ε1-approximate f1 and P2 ε2-approximate f2.
Consider P1 + P2.
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Conclusion

Power of torus polynomials is upper bounded by MidBit+.

Torus polynomials are closed under parity.
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Johan Håstad, Computational limitations of small-depth
circuits, MIT press, 1987.



Upper Bound
for Torus

Polynomials

Vaibhav
Krishan

Introduction

Our Results

Proof

Conclusion

References II

Alexander A Razborov, Lower bounds on the size of
bounded depth circuits over a complete basis with logical
addition, Mathematical Notes of the Academy of Sciences
of the USSR 41 (1987), no. 4, 333–338.

Roman Smolensky, Algebraic methods in the theory of
lower bounds for boolean circuit complexity, Proceedings
of the nineteenth annual ACM symposium on Theory of
computing, 1987, pp. 77–82.

Ryan Williams, Nonuniform ACC circuit lower bounds,
Journal of the ACM (JACM) 61 (2014), no. 1, 1–32.



Upper Bound
for Torus

Polynomials

Vaibhav
Krishan

Introduction

Our Results

Proof

Conclusion

References III

Andrew Chi-Chih Yao, Separating the polynomial-time
hierarchy by oracles, 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985), IEEE, 1985,
pp. 1–10.


	Introduction
	Our Results
	Proof
	Conclusion

