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Figure: Circuits

−1 is true, 1 is false.
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Circuit satisfiability

C-SAT: Given a circuit C on n inputs from a circuit class C,
check if there exists a ∈ {−1, 1}n such that C(a) = −1.

#C-SAT: Count a ∈ {−1, 1}n such that C(a) = −1.

Trivial algorithm in time 2n poly(|C |).

Williams proved (co-non)deterministic C-SAT algorithms
running in time O(2n/nω(1)) imply NEXP 6⊂ C.

This was used to prove NEXP 6⊂ ACC.
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Definitions and Notations

Definition (k-PTF)
f : {−1, 1}n → {−1, 1} is a k-PTF if there is a polynomial P of
degree k such that f (a) = sgn(P(a)) for all a ∈ {−1, 1}n.

Important parameters are:

n is the number of inputs,
M = dlog2(

∑
|αi |)e, αi ∈ Z are coefficients in P.

Definition (k-PTF-SAT)
Given a polynomial P with parameters (n,M), does there exist
a ∈ {−1, 1}n such that P(a) < 0.
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Example
Let P = 2x1x2 + 4x2x3 − 3x1x3.

Then f : {−1, 1}3 → {−1, 1} be
defined by the truth table:

x1 x2 x3 f
1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1

Then f is a 2-PTF, defined by P.
n = 3 and M = dlog2(9)e = 4.
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Prior work

2-PTF-SAT in time 2n−Ω(
√

n) by Williams (ICALP’04,
STOC’14).

#k-PTF-SAT for M ≤ O(n1−Ω(1)) by Sakai et al.

Open until our work:
#2-PTF-SAT.
k-PTF-SAT for k ≥ 3.
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Our results

Theorem
For k = O(1), there is a zero-error randomized algorithm for
#k-PTF-SAT with parameters (n,M) which runs in time
poly(n,M) · 2n−Ω̃(S), where S = n1/(k+1).
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Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.
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More results
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Figure: k-PTF circuits, maxi deg(Pi ) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits



More results

P1

P2P3 P4

P5 P6 P7

Figure: k-PTF circuits, maxi deg(Pi ) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits



More results

P1

P2P3 P4

P5 P6 P7

Figure: k-PTF circuits, maxi deg(Pi ) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits




