
A #SAT Algorithm for Small Constant-Depth
Circuits with PTF gates

Swapnam Bajpai1 Vaibhav Krishan1 Deepanshu Kush2

Nutan Limaye1 Srikanth Srinivasan2

1Department of Computer Science and Engineering, IIT Bombay, Mumbai, India

2Department of Mathematics, IIT Bombay, Mumbai, India

Innovations in Theoretical Computer Science 2019

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Circuits

f1

f2f3 f4

f5 f6 f7

Figure: Circuits

−1 is true, 1 is false.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Circuit satisfiability

C-SAT: Given a circuit C on n inputs from a circuit class C,
check if there exists a ∈ {−1, 1}n such that C(a) = −1.

#C-SAT: Count a ∈ {−1, 1}n such that C(a) = −1.

Trivial algorithm in time 2n poly(|C |).

Williams proved (co-non)deterministic C-SAT algorithms
running in time O(2n/nω(1)) imply NEXP 6⊂ C.

This was used to prove NEXP 6⊂ ACC.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Circuit satisfiability

C-SAT: Given a circuit C on n inputs from a circuit class C,
check if there exists a ∈ {−1, 1}n such that C(a) = −1.

#C-SAT: Count a ∈ {−1, 1}n such that C(a) = −1.

Trivial algorithm in time 2n poly(|C |).

Williams proved (co-non)deterministic C-SAT algorithms
running in time O(2n/nω(1)) imply NEXP 6⊂ C.

This was used to prove NEXP 6⊂ ACC.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Circuit satisfiability

C-SAT: Given a circuit C on n inputs from a circuit class C,
check if there exists a ∈ {−1, 1}n such that C(a) = −1.

#C-SAT: Count a ∈ {−1, 1}n such that C(a) = −1.

Trivial algorithm in time 2n poly(|C |).

Williams proved (co-non)deterministic C-SAT algorithms
running in time O(2n/nω(1)) imply NEXP 6⊂ C.

This was used to prove NEXP 6⊂ ACC.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Circuit satisfiability

C-SAT: Given a circuit C on n inputs from a circuit class C,
check if there exists a ∈ {−1, 1}n such that C(a) = −1.

#C-SAT: Count a ∈ {−1, 1}n such that C(a) = −1.

Trivial algorithm in time 2n poly(|C |).

Williams proved (co-non)deterministic C-SAT algorithms
running in time O(2n/nω(1)) imply NEXP 6⊂ C.

This was used to prove NEXP 6⊂ ACC.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Definitions and Notations

Definition (k-PTF)
f : {−1, 1}n → {−1, 1} is a k-PTF if there is a polynomial P of
degree k such that f (a) = sgn(P(a)) for all a ∈ {−1, 1}n.

Important parameters are:

n is the number of inputs,
M = dlog2(

∑
|αi |)e, αi ∈ Z are coefficients in P.

Definition (k-PTF-SAT)
Given a polynomial P with parameters (n,M), does there exist
a ∈ {−1, 1}n such that P(a) < 0.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Definitions and Notations

Definition (k-PTF)
f : {−1, 1}n → {−1, 1} is a k-PTF if there is a polynomial P of
degree k such that f (a) = sgn(P(a)) for all a ∈ {−1, 1}n.

Important parameters are:

n is the number of inputs,
M = dlog2(

∑
|αi |)e, αi ∈ Z are coefficients in P.

Definition (k-PTF-SAT)
Given a polynomial P with parameters (n,M), does there exist
a ∈ {−1, 1}n such that P(a) < 0.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Example
Let P = 2x1x2 + 4x2x3 − 3x1x3.

Then f : {−1, 1}3 → {−1, 1} be
defined by the truth table:

x1 x2 x3 f
1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1

Then f is a 2-PTF, defined by P.
n = 3 and M = dlog2(9)e = 4.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Example
Let P = 2x1x2 + 4x2x3 − 3x1x3. Then f : {−1, 1}3 → {−1, 1} be
defined by the truth table:

x1 x2 x3 f
1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1

Then f is a 2-PTF, defined by P.
n = 3 and M = dlog2(9)e = 4.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Example
Let P = 2x1x2 + 4x2x3 − 3x1x3. Then f : {−1, 1}3 → {−1, 1} be
defined by the truth table:

x1 x2 x3 f
1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1

Then f is a 2-PTF, defined by P.

n = 3 and M = dlog2(9)e = 4.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Example
Let P = 2x1x2 + 4x2x3 − 3x1x3. Then f : {−1, 1}3 → {−1, 1} be
defined by the truth table:

x1 x2 x3 f
1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1

Then f is a 2-PTF, defined by P.
n = 3 and M = dlog2(9)e = 4.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Prior work

2-PTF-SAT in time 2n−Ω(
√

n) by Williams (ICALP’04,
STOC’14).

#k-PTF-SAT for M ≤ O(n1−Ω(1)) by Sakai et al.

Open until our work:
#2-PTF-SAT.
k-PTF-SAT for k ≥ 3.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Prior work

2-PTF-SAT in time 2n−Ω(
√

n) by Williams (ICALP’04,
STOC’14).

#k-PTF-SAT for M ≤ O(n1−Ω(1)) by Sakai et al.

Open until our work:
#2-PTF-SAT.
k-PTF-SAT for k ≥ 3.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Prior work

2-PTF-SAT in time 2n−Ω(
√

n) by Williams (ICALP’04,
STOC’14).

#k-PTF-SAT for M ≤ O(n1−Ω(1)) by Sakai et al.

Open until our work:
#2-PTF-SAT.
k-PTF-SAT for k ≥ 3.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Our results

Theorem
For k = O(1), there is a zero-error randomized algorithm for
#k-PTF-SAT with parameters (n,M) which runs in time
poly(n,M) · 2n−Ω̃(S), where S = n1/(k+1).

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

Proof sketch

Two steps:

1 Solve and store the answer for all k-PTFs on m variables.

2 For each partial assignment {xm+1, . . . , xn} → {−1, 1}, apply
the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is
similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane,
Lovett, Moran, Zhang in step 1.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

More results

P1

P2P3 P4

P5 P6 P7

Figure: k-PTF circuits, maxi deg(Pi) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

More results

P1

P2P3 P4

P5 P6 P7

Figure: k-PTF circuits, maxi deg(Pi) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

More results

P1

P2P3 P4

P5 P6 P7

Figure: k-PTF circuits, maxi deg(Pi) ≤ k

#SAT for small k-PTF circuits but with sparsity restriction by
Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

We give #SAT algorithm for small k-PTF circuits as well.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan A #SAT Algorithm for Small Constant-depth PTF circuits

