A #SAT Algorithm for Small Constant-Depth Circuits with PTF gates

Swapnam Bajpai¹ Vaibhav Krishan¹ Deepanshu Kush² Nutan Limaye¹ Srikanth Sriniyasan²

¹Department of Computer Science and Engineering, IIT Bombay, Mumbai, India

²Department of Mathematics, IIT Bombay, Mumbai, India

Innovations in Theoretical Computer Science 2019

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

Figure: Circuits

 -1 is true, 1 is false.

メロトメ 御 トメ 君 トメ 君 ト

 299

准

- \bullet C-**SAT**: Given a circuit C on *n* inputs from a circuit class C, check if there exists $a \in \{-1,1\}^n$ such that $C(a) = -1$.
- $\#C$ -**SAT**: Count $a \in \{-1, 1\}^n$ such that $C(a) = -1$.
- Trivial algorithm in time $2^n \text{poly}(|C|)$.
- \bullet Williams proved (co-non)deterministic C -SAT algorithms running in time $O(2^n/n^{\omega(1)})$ imply NEXP $\not\subset \mathcal{C}$.

• This was used to prove NEXP $\not\subset$ ACC.

- \bullet C-**SAT**: Given a circuit C on *n* inputs from a circuit class C, check if there exists $a \in \{-1,1\}^n$ such that $C(a) = -1$.
- $\#C$ -**SAT**: Count $a \in \{-1, 1\}^n$ such that $C(a) = -1$.
- Trivial algorithm in time $2^n \text{poly}(|C|)$.
- \bullet Williams proved (co-non)deterministic C -SAT algorithms running in time $O(2^n/n^{\omega(1)})$ imply NEXP $\not\subset \mathcal{C}$.

• This was used to prove NEXP $\not\subset$ ACC.

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

- \bullet C-**SAT**: Given a circuit C on *n* inputs from a circuit class C, check if there exists $a \in \{-1,1\}^n$ such that $C(a) = -1$.
- $\#C$ -**SAT**: Count $a \in \{-1, 1\}^n$ such that $C(a) = -1$.
- Trivial algorithm in time $2^n \text{poly}(|C|)$.
- \bullet Williams proved (co-non)deterministic C-SAT algorithms running in time $O(2^n/n^{\omega(1)})$ imply NEXP $\not\subset \mathcal{C}$.

• This was used to prove NEXP $\not\subset$ ACC.

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

- \bullet C-**SAT**: Given a circuit C on *n* inputs from a circuit class C, check if there exists $a \in \{-1,1\}^n$ such that $C(a) = -1$.
- $\#C$ -**SAT**: Count $a \in \{-1, 1\}^n$ such that $C(a) = -1$.
- Trivial algorithm in time $2^n \text{poly}(|C|)$.
- \bullet Williams proved (co-non)deterministic C -SAT algorithms running in time $O(2^n/n^{\omega(1)})$ imply $\mathrm{NEXP}\not\subset \mathcal{C}.$
	- \bullet This was used to prove NEXP $\not\subset$ ACC.

オート オート オート

Definition (k-PTF)

 $f: \{-1,1\}^n \rightarrow \{-1,1\}$ is a k-PTF if there is a polynomial P of degree k such that $f(a) = sgn(P(a))$ for all $a \in \{-1,1\}^n$.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Definition (k-PTF)

 $f: \{-1,1\}^n \rightarrow \{-1,1\}$ is a k-PTF if there is a polynomial P of degree k such that $f(a) = sgn(P(a))$ for all $a \in \{-1,1\}^n$.

Important parameters are:

- \bullet *n* is the number of inputs,
- $M = \lceil \log_2(\sum |\alpha_i|) \rceil$, $\alpha_i \in \mathbb{Z}$ are coefficients in P.

Definition (k-PTF-SAT)

Given a polynomial P with parameters (n*,* M), does there exist $a \in \{-1, 1\}^n$ such that $P(a) < 0$.

K 何 ▶ K 手 ▶ K 手 ▶

Let $P = 2x_1x_2 + 4x_2x_3 - 3x_1x_3$.

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan [A #SAT Algorithm for Small Constant-depth PTF circuits](#page-0-0)

イロメ イ団メ イモメ イモメー

高。 299

Let $P = 2x_1x_2 + 4x_2x_3 - 3x_1x_3$. Then $f: \{-1,1\}^3 \rightarrow \{-1,1\}$ be defined by the truth table:

メロメ メタメ メミメ メミメー

 \equiv

Let $P = 2x_1x_2 + 4x_2x_3 - 3x_1x_3$. Then $f: \{-1,1\}^3 \rightarrow \{-1,1\}$ be defined by the truth table:

Then f is a 2-PTF, defined by P .

S. Bajpai, V. Krishan, D. Kush, N. Limaye, S. Srinivasan [A #SAT Algorithm for Small Constant-depth PTF circuits](#page-0-0)

イロト イ押 トイヨ トイヨ トー

Þ

 QQ

Let $P = 2x_1x_2 + 4x_2x_3 - 3x_1x_3$. Then $f: \{-1,1\}^3 \rightarrow \{-1,1\}$ be defined by the truth table:

Then f is a 2-PTF, defined by P . $n = 3$ and $M = \lceil \log_2(9) \rceil = 4$.

イロト イ押 トイヨ トイヨ トー

Þ

- 2-PTF-SAT in time $2^{n-\Omega(\sqrt{n})}$ by Williams (ICALP'04, STOC'14).
- $\#$ k-PTF-SAT for $M \leq O(n^{1-\Omega(1)})$ by Sakai et al.
- Open until our work:
	- \bullet #2-PTF-SAT.
	- k -PTF-SAT for $k > 3$.

 2990

目

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

- 2-PTF-SAT in time $2^{n-\Omega(\sqrt{n})}$ by Williams (ICALP'04, STOC'14).
- $\#$ k-PTF-SAT for $M \leq O(n^{1-\Omega(1)})$ by Sakai et al.
- Open until our work:
	- \bullet #2-PTF-SAT.
	- k -PTF-SAT for $k > 3$.

 2990

∍

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

- 2-PTF-SAT in time $2^{n-\Omega(\sqrt{n})}$ by Williams (ICALP'04, STOC'14).
- $\#$ k-PTF-SAT for $M \leq O(n^{1-\Omega(1)})$ by Sakai et al.
- Open until our work:
	- \bullet #2-PTF-SAT.
	- k -PTF-SAT for $k > 3$.

イ押 トイヨ トイヨ トー

 2990

∍

Theorem

For $k = O(1)$, there is a zero-error randomized algorithm for #k-PTF-SAT with parameters (n*,* M) which runs in time $\operatorname{poly}(n, M) \cdot 2^{n - \tilde{\Omega}(S)},$ where $S = n^{1/(k+1)}.$

イ何 トイヨ トイヨ ト

- **1** Solve and store the answer for all k-PTFs on *m* variables.
- 2 For each partial assignment $\{x_{m+1}, \ldots, x_n\} \rightarrow \{-1, 1\}$, apply the partial assignment and use the stored answers.

Appropriate value for *m* gives the desired runtime. Approach is similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane, Lovett, Moran, Zhang in step 1.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

- \bullet Solve and store the answer for all k-PTFs on m variables.
- 2 For each partial assignment $\{x_{m+1}, \ldots, x_n\} \rightarrow \{-1, 1\}$, apply the partial assignment and use the stored answers.

Appropriate value for *m* gives the desired runtime. Approach is similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane, Lovett, Moran, Zhang in step 1.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

- \bullet Solve and store the answer for all k-PTFs on m variables.
- 2 For each partial assignment $\{x_{m+1}, \ldots, x_n\} \rightarrow \{-1, 1\}$, apply the partial assignment and use the stored answers.

Appropriate value for *m* gives the desired runtime. Approach is similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane, Lovett, Moran, Zhang in step 1.

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

- \bullet Solve and store the answer for all k-PTFs on m variables.
- 2 For each partial assignment $\{x_{m+1}, \ldots, x_n\} \rightarrow \{-1, 1\}$, apply the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane, Lovett, Moran, Zhang in step 1.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- \bullet Solve and store the answer for all k-PTFs on m variables.
- 2 For each partial assignment $\{x_{m+1}, \ldots, x_n\} \rightarrow \{-1, 1\}$, apply the partial assignment and use the stored answers.

Appropriate value for m gives the desired runtime. Approach is similar to Sakai et al.

Crucial difference is, we use learning algorithms designed by Kane, Lovett, Moran, Zhang in step 1.

A & Y E & Y E &

More results

Figure: k-PTF circuits, max_i deg(P_i) $\leq k$

- \bullet #SAT for small k-PTF circuits but with sparsity restriction by Kabanets and Lu (inspired by Kane, Kabanets, and Lu).
- We give $\#SAT$ algorithm for small k -PTF circuits as well.

 QQ

す 何 ト す ヨ ト す ヨ ト

More results

Figure: k-PTF circuits, max_i deg(P_i) $\leq k$

 \bullet #SAT for small k-PTF circuits but with sparsity restriction by Kabanets and Lu (inspired by Kane, Kabanets, and Lu).

• We give $\#SAT$ algorithm for small k -PTF circuits as well.

つくへ

More results

Figure: k-PTF circuits, max_i deg(P_i) $\leq k$

- \bullet #SAT for small k-PTF circuits but with sparsity restriction by Kabanets and Lu (inspired by Kane, Kabanets, and Lu).
- We give $\#SAT$ algorithm for small k-PTF circuits as well.

 QQ

THANK YOU.......

DO YOU HAVE ANY QUESTIONS?