

A #SAT ALGORITHM FOR SMALL-SIZE CONSTANT DEPTH PTF CIRCUITS Swapnam Bajpai, Vaibhav Krishan, Nutan Limaye, Deepanshu Kush, & Srikanth Srinivasan IIT Bombay

Introduction

 $f: \{-1, 1\}^n \to \{-1, 1\}$ is a k**-PTF** if there exists a multilinear polynomial P of degree k such that for all $a \in \{-1, 1\}^n$, $f(a) = sgn(P(a))$.

Input parameters:

- *n*, the number of variables,
- $M = \log_2(\Sigma|\alpha_i|)$, where $\alpha_i \in \mathbb{Z}$ are coefficients of P.

*k***-PTF-SAT**

Given a degree *k* polynomial *P* with (n, M) as parameters, does there exist $a \in \{-1, 1\}^n$, $P(a) < 0$.

Counting $a \in \{-1, 1\}^n$ such that $C(a) = -1$ is #SAT for *k*-PTF circuits.

Fig. 1: *k*-PTF circuits, $deg(P_i) \leq k$

Input parameters:

- *n*, the number of variables,
- $M = \max_i \log_2(\sum_j |\alpha_{ij}|), \alpha_{ij}$ coefficients of P_i ,
- *s* is the number of wires,
- *d* is the number of layers (depth).

Given a *k*-PTF circuit with parameters (n, M, s, d) , does there exist $a \in \{-1, 1\}^n$ such that $C(a) = -1$.

 \bullet #SAT for PTF circuits of small size and with few monomials in each polynomial, running in time $poly(n, M)2^{n-n^{\epsilon}}$ by Kabanets and Lu (inspired by lower bound for small PTF circuits by Kane, Kabanets, and Lu).

SAT for *k***-PTF circuits**

Motivations

- variables.
- **–** *Step 2* : For all but a *few* variables, consider all the reduced PTFs by assigning these chosen variables all possible values. For each such PTF use the already stored value and sum them all up.
- *Crucial change*: Use a learning algorithm by Kane, Lovett, Moran, and Zhang in step \perp .

- For many circuit classes C, analogously defined C − *SAT* is studied widely.
- Trivial algorithm run in time $2^n \text{poly}(|C|)$,
- Even superpolynomial savings imply superpolynomial **lower bounds** against NEXP.
- Connections to combinatorial problems.
- PTFs naturally generalize study of perceptrons.

Prior Work

- \bullet 2-PTF-SAT in time 2 *ⁿ*−Ω([√] \overline{n}) by Williams (ICALP'04, STOC'14).
- $#k$ -PTF-SAT for $M \leq O(n^{1-\Omega(1)})$ by Sakai et al.

Open until now \bullet #2-PTF-SAT. • k -PTF-SAT for $k \geq 3$. • #SAT for *k*-PTF circuits.

Online link

<https://arxiv.org/abs/1809.05932>

Results and Techniques

- Derandomizing the algorithm (promising leads exist)?
- **–** Would give lower bounds against NEXP.
- **–** But Kane, Kabanets, and Lu already proved it.

Result 1

For $k = O(1)$, there is a zero-error randomized algorithm for $#k$ -PTF-SAT with parameters (n, M) which runs in time $poly(n, M)$ $2^{n-\tilde{\Omega}(S)}$, where $S = n^{1/(k+1)}$.

- Improving the constraints on the number of wires?
- **–**Note that there are bootstrapping results.
- **–** But we don't achieve the requirements.
- Extending to growing degrees?
- **–**Note that the algorithm from Kabanets and Lu works for any degree function.
- **–** But their sparsity constraint is equivalent to degree being constant.

Proof Sketch:

• Follows the outline of Sakai et al.

– *Step 1* : Count and store the number of satisfying assignments for each PTF on *few*

Counting $a \in \{-1, 1\}^n$ such that $P(a) < 0$ is $\#k$ **-PTF-SAT**.

Proof Sketch:

 Re

- Follows the outline of Kabanets and Lu.
- Inductive proof.
- **–***Base Case*: Solve the problem for a small AND of *k*-PTFs.
- **–** *Inductive Case*:

1.Apply random restrictions,

- 2. Many gates at the bottom layer become biased towards a specific output,
- 3. Check all the assignments which make these gates take the *minority* value,
- 4.Replace these gates with their *majority* values and remember this by moving them under an AND,
- 5. For other gates, replace with all possible values and remember this by moving them under an AND,
- 6.Recurse on lower depth circuits thus formed.
- *Crucial changes*:
- **–**Use our algorithm from the previous result for base case.
- **–** Enumerating the assignments which lead to *minority* output also uses previous result.

Further work