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Abstract
The class ACC0 consists of Boolean functions that can be computed by constant-depth circuits of
polynomial size with AND, NOT and MODm gates, where m is a natural number. At the frontier of
our understanding lies a widely believed conjecture asserting that MAJORITY does not belong to
ACC0.

A few years ago, Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019) introduced torus polynomial
approximations as an approach towards this conjecture. Torus polynomials approximate Boolean
functions when the fractional part of their value on Boolean points is close to half the value of the
function. They reduced the conjecture that MAJORITY /∈ ACC0 to a conjecture concerning the
non-existence of low degree torus polynomials that approximate MAJORITY.

We reduce the non-existence problem further, to a statement about finding feasible solutions for
an infinite family of linear programs. The main advantage of this statement is that it allows for
incremental progress, which means finding feasible solutions for successively larger collections of
these programs. As an immediate first step, we find feasible solutions for a large class of these linear
programs, leaving only a finite set for further consideration. Our method is inspired by the method
of dual polynomials, which is used to study the approximate degree of Boolean functions. Using our
method, we also propose a way to progress further.

We prove several additional key results with the same method, which include:
A lower bound on the degree of symmetric torus polynomials that approximate the AND function.
As a consequence, we get a separation that symmetric torus polynomials are weaker than their
asymmetric counterparts.
An error-degree trade-off for symmetric torus polynomials approximating the MAJORITY function,
strengthening the corresponding result of Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019).
The first lower bounds against torus polynomials approximating AND, showcasing the power of
the machinery we develop. This lower bound nearly matches the corresponding upper bound.
Hence, we get an almost complete characterization of the torus polynomial approximation degree
of AND.
Lower bounds against asymmetric torus polynomials approximating MAJORITY, or AND, in the
very low error regime. This partially answers a question posed in Bhrushundi, Hosseini, Lovett
and Rao (ITCS 2019) about error-reduction for torus polynomials.
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1 Introduction

Proving that an explicit function is not contained in a complexity class is the prime focus of
complexity theorists, and such questions make up some of the hardest problems in computer
science. We study such a question at the frontier of our knowledge about Boolean circuit
complexity classes. To state the question, we first need to define the class of Boolean circuits
we consider.

Denote by ACC0 the class of constant-depth Boolean circuits of polynomial size comprising
AND,NOT, and MODm gates. A MODm gate outputs 1 if and only if the count of 1s in the
input is divisible by m. Nearly 35 years ago, Barrington [2] conjectured that ACC0 does not
contain MAJORITY. Here, MAJORITY outputs 1 if and only if the number of 1s is at least
half of the total number of inputs. This conjecture has remained unresolved since.

▶ Conjecture 1 (Barrington’s conjecture [2]). MAJORITY /∈ ACC0.

The objective of the conjecture is to prove that a particular circuit class cannot compute
a certain function. In the literature, this task is referred to as proving lower bounds against
that class. We outline a few major approaches that have led to Boolean circuit lower bounds
in the past.

One of the approaches is based on “simplification”, and the probabilistic method, for
example: using random restrictions. This is a classical technique, developed for studying
various complexity classes, such as AC0, the class of constant-depth circuits comprising AND
and NOT gates. A classic example is the landmark result of Håstad [15], who proved that
AC0 circuits simplify when a significant fraction of the input variables are assigned values
randomly. It is easy to see that the parity function does not undergo such simplification.
The author formalized this intuition to prove nearly optimal lower bounds against AC0

circuits. However, random restrictions do not seem useful for lower bounds against ACC0, as
it contains the parity function.

Another approach is to use the satisfiability algorithms–to–lower bounds connection, to
prove lower bounds from high complexity classes such as NEXP. Williams [25] developed
this approach in a groundbreaking work, and used it to prove that NEXP is not contained in
ACC0. Subsequent works [13, 20, 9, 12, 10] have considerably strengthened this connection.
In particular, Murray and Williams [20] have proved that NQP is not contained in ACC0,
improving the lower bound. However, it is not clear how to use this method to prove that an
easily computable function, such as MAJORITY, is not contained in ACC0.

This leads us toward another classical approach, based on the polynomial method. In
this framework, researchers study various notions of representing Boolean functions using
polynomials. This framework is quite powerful, and has numerous applications across
theoretical computer science, see Aaronson’s survey [1] for an interesting and insightful
account. We describe two notions of polynomial representations that have found uses in the
study of Boolean circuits.

The first notion, called real polynomial approximation, uses polynomials over the reals to
approximate Boolean functions pointwise. Nisan and Szegedy [21], in a seminal work, studied
this model, and proved its connections with other natural computational models, such as
decision trees. Their work provided considerable impetus to the study of real polynomial
approximations, and firmly established their use in mainstream complexity theory. Today,
the study of real polynomial approximations is a subfield by itself, with well-developed
techniques for lower bounds and upper bounds, and numerous applications. See Bun and
Thaler’s survey [8] for a comprehensive discussion of real polynomial approximations.
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The second notion of polynomial approximation, called probabilistic polynomials, uses
a distribution of polynomials over a finite field. On any Boolean point, a polynomial
from the distribution should match the value of the given function with “high” probability.
Razborov [23], and Smolensky [24], pioneered the use of this model in independent works.
Consider any function f computable by constant-depth circuits of polynomial size with
AND,NOT and MODp gates, for a prime p. The authors, independently, proved that there
exists a distribution of “low” degree polynomial over Fp that matches f with “high” probability.
They also proved that the same does not hold for MAJORITY, or MODq for a prime q ̸= p,
leading to a lower bound.

Broadly speaking, in order to prove that a function f is not contained in a class C, the
theme here is to find a distinguisher. A distinguisher is a function µ that maps f to a point
outside the image of C under µ, proving f /∈ C. That is, proving µ(f) /∈ µ(C) implies f /∈ C.
For example, in [23, 24], the degree of the probabilistic polynomial acts as the distinguisher.
This degree is low for functions in AC0[p], while MAJORITY requires large degree, hence the
lower bound MAJORITY /∈ AC0[p].

The models of polynomial approximation defined above do not seem to give a distinguisher
against ACC0. For example, ACC0 circuits can use MOD6, which requires large degree in
either model. In fact, for a long time, there were no polynomial method based approaches
known for proving ACC0 lower bounds.

Then, in a pivotal work few years ago, Bhrushundi, Hosseini, Lovett and Rao [4] made an
inspired suggestion of using the degree of torus polynomials as a distinguisher towards the
MAJORITY vs ACC0 question. Torus polynomials approximate a Boolean function f if their
fractional part is close to f

2
1. They proved that torus polynomial approximations extend both

real polynomial approximations and approximation using probabilistic polynomials (see [4,
Lemma 14]). In fact, torus polynomials are more powerful, they can efficiently approximate
MODm for any m. We define this model below, rephrasing [4, Definition 1].

▶ Definition 2 (Torus Polynomial Approximation [4]). Consider a Boolean function f :
{0, 1}n → {0, 1}, a polynomial P ∈ R[X1, . . . , Xn] (we assume that P is multilinear without
losing generality) and a real number 0 ≤ ε < 1

4 . P is a torus polynomial that ε-approximates
f , if the following holds:

There exists a function Z : {0, 1}n → Z, such that for any Boolean point a ∈ {0, 1}n, we
have

∣∣∣P (a) − f(a)
2 − Z(a)

∣∣∣ ≤ ε. In other words, the fractional part of P (a) is within ε of
f(a)

2 .
Denote the minimum degree of such a polynomial by degε(f).

Given any function f : {0, 1}n → {0, 1}, consider the unique polynomial that exactly
matches f on all Boolean points2. This would require degree n for most functions, with zero
error of approximation. Naturally, the question is, for which functions f can we construct a
torus polynomial of much smaller degree, say log2(n), that 1

n2 -approximate f , for example.
In [4, Corollary 20], the authors proved that something similar holds for all functions in
ACC0.

▶ Theorem 3 ([4]). Consider any function f : {0, 1}n → {0, 1} such that f ∈ ACC0. Then,
degε(f) ≤ log(n)O(1) for any ε ≥ 1

nO(1) .

1 0 and 1 have the same fractional part. Dividing f : {0, 1}n → {0, 1} by 2 makes the fractional parts
different.

2 The existence of such a polynomial is folklore.

ITCS 2026
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Hence, proving that the same does not hold for the majority function would prove
MAJORITY is not contained in ACC0. This is precisely the goal of our work in this paper.
While we could not take this task to completion, we do make progress towards it. Before
discussing our contributions, we discuss previous work related to ACC0 as well as torus
polynomials.

1.1 Previous Work
Various works in the 90’s had proved conversion results for ACC0, with the purpose of proving
ACC0 lower bounds. For example, strengthening the results from [26, 3], Green, Köbler,
Regan, Schwentick and Torán [14] proved that all ACC0 functions have MidBit+ circuits
computing them. Here, MidBit+ is the class of depth-two circuits, with AND gates at the
bottom and a MidBit gate3 at the top. The authors proposed to prove lower bounds against
MidBit+ as an approach to prove ACC0 lower bounds. They argued that the simpler structure
of MidBit+ circuits might make it easier to prove lower bounds.

Along similar lines, by combining [16, 22], one gets a communication complexity based
approach. These works together imply that lower bounds against the number-on-forehead
communication model lead to ACC0 lower bounds. However, lower bounds against this
communication model also imply MidBit+ lower bounds. Hence, logically speaking, lower
bounds against MidBit+ are an easier route to ACC0 lower bounds.

In Krishan [17], the author proved that functions with low degree torus polynomial
approximations belong to MidBit+. Hence, one can argue that lower bounds against torus
polynomials is an even more refined approach for ACC0 lower bounds. Moreover, Chen, Lu,
Lyu and Oliveira [11] proved that lower bounds against torus polynomials lead to average-
case lower bounds, and pseudorandom generators, against ACC0. Both of these are major
open questions, which gives us a further impetus for proving lower bounds against torus
polynomials.

In [4], the authors introduced torus polynomials with the goal of proving that MAJORITY
does not belong to ACC0. Now, MAJORITY is a symmetric function, as its value only depends
on the number of 1s in the input. Hence, it is natural to study symmetric4 torus polynomials
that approximate MAJORITY as the first step. The authors used a counting-based argument
to prove the following lower bound.

▶ Theorem 4 (Corollary 23 of [4]). Any symmetric torus polynomial, that 1
20n -approximates

MAJORITY, must have degree Ω
(√

n
log(n)

)
.

Now, a priori, this does not resolve Barrington’s conjecture, it needs an analogous
statement for asymmetric torus polynomials. Indeed, in [4, Conjecture 5], the authors
conjectured that Theorem 4 holds for asymmetric torus polynomials.

▶ Conjecture 5 ([4]). Any torus polynomial, that 1
20n -approximates MAJORITY, must have

degree Ω
(√

n
log(n)

)
.

This conjecture, if true, proves Barrington’s conjecture. Moreover, it will separate P from
ACC0, improving our knowledge well beyond what is currently known.

3 A MidBit outputs the middle bit from the binary expansion of the number of 1s, with a fixed tie-breaking
choice.

4 A polynomial is symmetric if it is invariant under permutation of its variables.
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1.2 Our Results
The main goal of our work is to resolve Conjecture 5. Towards this end, we outline a plan of
attack in Section 3. A major contribution of this paper is a reduction of Conjecture 5 to a
statement that allows for incremental progress.

Fix n and d = o

(√
n

log(n)

)
, and suppose the goal is to prove the following: Any torus

polynomial that ε-approximates MAJORITY over n variables must have degree more than d.
Informally stated, we define a vector space Γ of dimension 2n, a vector v′ of dimension 2n,
and conjecture that for any vector v ∈ Z2n , there is a γ ∈ Γ such that:

2n∑
i=1

(vi + v′
i)γi > ε

2n∑
i=1

|γi|

The vector v′ has a very simple structure, it encodes the function for which we wish to
prove the lower bound, say MAJORITY. See Theorem 8 for an exact statement. Incremental
progress would mean proving the statement for larger and larger subsets of Z2n .

We take the first steps in this direction by first bounding the entries in v, see Theorem 11.
This immediately leaves us with only a finite subset of Z2n for which we need to argue further.
Then, in Theorem 12, we take another step by showing that a few entries in v determine the
other entries.

We demonstrate the power of our method by proving a lower bound against torus
polynomials approximating AND. No lower bounds were known for asymmetric torus
polynomials prior to our work, and the lower bound we prove is only quadratically away
from the corresponding upper bound for inverse-polynomial error. Following is the formal
statement of the result.

▶ Theorem 6. Any torus polynomial, that ε-approximates AND, must have degree Ω
(
log
( 1
ε

))
.

The result above also holds for MAJORITY, but it does not suffice to prove MAJORITY /∈
ACC0, which requires a lower bound of the form logω(1)(n) for some inverse-polynomial error.
Further, as a special case of the result above, we study the case when ε is exponentially
small. We show that AND requires full degree in this regime, and so does MAJORITY. In [4,
Problem 6], the authors ask about error-reduction for torus polynomials. The full-degree
lower bound allows us to conditionally answer this question for a particular error-regime,
which we discuss in Subsection 4.1.

Our method also applies to symmetric torus polynomials, which we use to prove a much
stronger lower bound against symmetric torus polynomials approximating AND. This lower
bound matches the lower bound from [4, Corollary 23] (refer to Theorem 4), but for AND,
rather than MAJORITY. Note that no such lower bound was known for AND before our
work, and it matches the corresponding upper bound, barring some log factors. We state the
result below.

▶ Theorem 7. Any symmetric torus polynomial, that 1
20n -approximates AND, must have

degree Ω
(√

n
log(n)

)
.

The lower bound for symmetric torus polynomials is higher than the upper bound
for asymmetric torus polynomials approximating AND. Hence, as a corollary, we prove
that symmetric torus polynomials are weaker than their asymmetric counterparts, see
Corollary 23. Moreover, this shows that a symmetrization based approach is unlikely to work
for Conjecture 5.

ITCS 2026



88:6 Lower Bounds and Separations for Torus Polynomials

We also strengthen [4, Corollary 23], and prove stronger degree lower bounds for smaller
error. If one follows the proof of [4, Corollary 23], for symmetric torus polynomials that
1
n2 -approximate MAJORITY, the lower bound remains the same, i.e. Ω

(√
n

log(n)

)
. We are

able to prove Ω (
√
n) as the lower bound in this case, strictly improving the degree, albeit by

a log factor. In fact, we are able to prove an error-degree trade-off, see Theorem 28 for the
exact statement.

Our Method

We use a linear programming based approach to prove our lower bound results. This approach,
based on duality in linear programs, allows us to find a witness that certifies the non-existence
of a torus polynomial approximation. We describe a broad outline of the method below.

Consider a torus polynomial P , of degree at most d, that ε-approximates f . Then,
there exists some integer function Z : {0, 1}n → Z, such that P (a) is at most ε away
from Z(a) + f(a)

2 for any a ∈ {0, 1}n. For each a, we can write P (a) as a particular linear
combination of its coefficients, hence, the condition above is a linear constraint. Here,
we make a crucial choice, with respect to how we treat Z. If we treat each Z(a) as an
integer-valued variable, we get a system of linear Diophantine inequalities, that are much
harder to handle. Instead, we treat each Z(a) as an indeterminate, and write one linear
program for each possible function Z.

Thereby, we get an infinite family of linear programs, such that P exists if and only if
some program from the family is feasible. Hence, to prove that P does not exist, we need to
prove that each program is infeasible, for which we look at the dual of these programs. Using
strong duality in linear programs, P does not exist if and only if each of the dual programs
is feasible.

Now, given a function Z, the dual program we obtain is as follows: For each n, and each
degree d, we have a matrix M(n, d), comprising the evaluations of all monomials of degree
at most d on each Boolean point. The set of solutions for the dual program consists of the
nullspace of M(n, d), i.e., vectors γ such that M(n, d)γ = 0. Here, γ is a vector with 2n
many real entries, with each entry γa indexed by a Boolean point a. A vector γ is a feasible
solution for the dual, if it satisfies

∣∣∣∑a∈{0,1}n γa

(
Z(a) + f(a)

2

)∣∣∣ > ε
∑
a∈{0,1}n |γa|. For a

detailed explanation on how we obtain the dual, please refer to Theorem 8.
With this method, our plan to prove Conjecture 5 is as follows. Fix n, and any d =

o

(√
n

log(n)

)
, with f = MAJORITY and ε = 1

20n . For any function Z : {0, 1}n → Z, we

plan to find a feasible solution γ for the dual corresponding to Z. To start, we find such a
feasible solution if |Z(a)| exceeds an upper bound for any a ∈ {0, 1}n, where the upper bound
depends on a. Then, we show how to infer the values of Z(a) for each a with Hamming weight
|a| ≥ (d+ 1)2, when all Z(a) for |a| < (d+ 1)2 are fixed. In other words, if Z(a) does not
take the inferred value for some a, we find a feasible solution for the dual corresponding to Z.
We propose to continue this plan further, by finding more feasible solutions to incrementally
rule out all possible Zs.

Our method shares some similarities to how dual polynomials are used to prove lower
bounds for real polynomial approximations. Each vector γ in the nullspace of M(n, d) is in
fact a dual polynomial, with pure high-degree more than d. We use a geometric perspective,
as we find it more useful, especially for our lower bound results.
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Organization
We discuss some preliminaries, and a general method for proving torus polynomial lower
bounds, in Section 2. Based on this method, we propose a plan to prove Conjecture 5 in
Section 3. Our lower bound results for asymmetric torus polynomials appear in Section 4.
Finally, we prove lower bounds for symmetric torus polynomials in Section 5.

2 Preliminaries

We consider natural numbers without including 0, and denote it by N = {1, 2, . . .}. For
n ∈ N and d ∈ N, we use the following notation for brevity:(

n

≤ d

)
=
∑
i≤d

(
n

i

) (
n

> d

)
=
∑
i>d

(
n

i

)
[n] = {1, . . . , n} [n]∗ = {0, . . . , n}(

[n]
≤ d

)
= {S : S ⊆ [n], |S| ≤ d}

(
[n]
> d

)
= {S : S ⊆ [n], |S| > d}

2.1 Sets and Boolean Points
We identify 2[n] with {0, 1}n in the natural way, as follows. For S ⊆ [n], the corresponding
Boolean point has a 1 at position i if and only if i is present in S. This defines a bijection
between 2[n] and {0, 1}n. Using this bijection, we will often interpret a set S ⊆ [n] as a
Boolean point, and a Boolean point a ∈ {0, 1}n as a set, making the interpretation explicit
wherever it is not clear from the context. |a| denotes the Hamming weight of a ∈ {0, 1}n,
which also equals its size when considered as a set.

2.2 Linear Algebra
Over the reals R, we denote the set of matrices of size m× n by Mm×n(R). For a matrix
M ∈ Mm×n(R), we denote its nullspace by nullspace(M) = {γ ∈ Rn : Mγ = 0}. For a
vector γ ∈ Rn, we denote its ℓp-norm by ∥γ∥p = (

∑n
i=1|γi|p)

1
p . Of particular interest to us

are the ℓ1-norm and the ℓ2-norm, defined for p = 1, 2 respectively. We will also consider the
ℓ∞-norm, defined as ∥γ∥∞ = maxni=1|γi|.

2.3 Our Method for Torus Polynomial Lower Bounds
Now, we describe a general method for proving lower bounds on torus polynomial approxima-
tions. Fix n ∈ N and d ∈ N, such that d < n. Also, fix a Boolean function f : {0, 1}n → {0, 1},
and an error of approximation ε < 1

4 . We start by defining a family of set-inclusion matrices
that will be relevant for the method. For each monomial of degree at most d over n variables,
the matrix contains one row, and the row encodes the evaluation of the monomial over all
Boolean points.

▶ Construction 1. Define the matrix M(n, d) of size
(
n

≤d
)

× 2n as follows. Its rows are
indexed by elements of

([n]
≤d
)
, and columns by elements of 2[n]. The entries for 1 ≤ i ≤

(
n

≤d
)
,

1 ≤ j ≤ 2n are:

Mi,j = 1Si⊆Sj

Here, 1Si⊆Sj
is an indicator function, evaluating to 1 if Si ⊆ Sj, and zero otherwise.

ITCS 2026
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In the following statement, we convert the question of torus polynomial lower bounds to
an existence based question.

▶ Theorem 8. The following are equivalent for any n ∈ N, d ∈ N such that d < n, ε < 1
4

and f : {0, 1}n → {0, 1}:
Any torus polynomial that ε-approximates f has degree more than d.
For any Z : {0, 1}n → Z, there exists a vector γ ∈ nullspace(M(n, d)), such that:∣∣∣∣〈Z + f

2 , γ
〉∣∣∣∣ > ε∥γ∥1

We do not present the proof here, as it is very similar to the method of dual polynomials
(see [8] or refer to the full version for a proof).

3 Plan for Majority

In this section, we set up a program towards proving Conjecture 5. Fix the function for this

section f = MAJORITY, some large enough n ∈ N, any d ≤ O

(√
n

log(n)

)
, and ε = 1

20n . Call

a function Z : {0, 1}n → Z good, if there is a witness γ ∈ nullspace(M(n, d)) such that:∣∣∣∣〈Z + MAJORITY
2 , γ

〉∣∣∣∣ > ε∥γ∥1

In other words, Z is good, if we can prove that the dual corresponding to Z is feasible.
Conjecture 5 posits that all Zs are good. In this language, the lower bound result by
Bhrushundi, Hosseini, Lovett and Rao [4, Corollary 3.3] states that all symmetric Zs are
good.

Now, the challenge is that we need to argue about infinitely many Zs, and find a feasible
solution γ from the vector space nullspace(M(n, d)), which is also infinite. The latter is
easy to fix using the theory of linear programming, as we can choose γ from the set of basic
solutions, which is a finite set. Therefore, we focus on the set of good Zs, and show that it is
cofinite. In other words, we show that all Zs, except for a finite set, are good.

Towards this goal, we first make an observation that allows us to consider Zs as functions
over a smaller domain. Consider two functions Z and Z ′, such that Z − Z ′ ∈ row–span(M).
Then, ⟨Z, γ⟩ equals ⟨Z ′, γ⟩ for any γ ∈ nullspace(M). Hence, if Z is good, then any Z ′

such that Z − Z ′ ∈ row–span(M) is also good. Therefore, define the relation Z ∼ Z ′ if
Z − Z ′ ∈ row–span(M), which is an equivalence relation. We can pick a representative Z
from each equivalence class of the relation, and it suffices to prove that the representative Z
is good. The following statement formalizes this intuition.

▶ Lemma 9. Consider a polynomial P ∈ R[X1, . . . , Xn] of degree at most d. Then, there
exists a polynomial P ′ ∈ R[X1, . . . , Xn] of degree at most d, satisfying the following conditions:

If P ε-approximates f , then P ′ also ε-approximates f .
If Z ′ denotes the integer part of P ′, then Z ′(a) = 0 for any a with |a| ≤ d.

The proof is based on a simple inductive argument, which we present in the full version.
Henceforth, we will always assume that Z(a) = 0 for any a ∈ {0, 1}n with |a| ≤ d. Now, we
begin the task of proving that certain Zs are good. We will produce the vectors we need
for this task using the following construction, which is only a minor generalization of the
construction from [7].



V. Krishan and S. Vishwanathan 88:9

▶ Construction 2. Construct a vector γ as follows.
Input: two natural numbers n ∈ N and d ∈ [n− 1]∗,

two subsets S1, S2 ⊆ [n], such that S1 ⊆ S2, and |S2 \ S1| ≥ d+ 1,
a set I ⊆ [|S2 \ S1|]∗ of size |I| = d+ 2.

Output: A vector γ ∈ R2n .
Construction: First, define a univariate polynomial qI(t) =

∏
i∈[k]∗\I(t − i), where k =

|S2 \ S1|. For any set T , if S1 ⊆ T ⊆ S2, keep γT = (−1)|T |qI(|T \ S1|). Otherwise, keep
γT = 0.
Output γ.

▶ Lemma 10. Consider any n ∈ N, d ∈ [n − 1]∗, S1, S2 ⊆ [n] such that S1 ⊆ S2 and
|S2 \ S1| ≥ d+ 1, and I ⊆ [|S2 \ S1|]∗ of size |I| = d+ 2. Then, Construction 2, on input
n, d, S1, S2 and I, outputs a vector γ ∈ nullspace(M(n, d)).

As the proof is similar to the proof of [8, Lemma 31], we omit it here (refer to the full
version for a proof). Using these vectors constructed above, we prove an upper bound on the
value of each Z(a). In other words, for each a we describe an upper bound, such that if Z(a)
violates this bound, then Z is good. The reader may think of this as an upper bound on an
appropriately defined weighted ℓ∞-norm of Z.

▶ Theorem 11. Choose a large enough n ∈ N. Consider a torus polynomial P , of degree at
most d < n

2 , that approximates f = MAJORITY within an error of ε. Then, the following
holds for any a ∈ {0, 1}n and the function Z corresponding to P :

|Z(a)| ≤ ε2d+1
(

|a|
d+ 1

)
In other words, if |Z(a)| > ε2d+1( |a|

d+1
)

for some a ∈ {0, 1}n, then Z is good.
The statement above holds for any f such that f(a) = 0 for each a ∈

([n]
≤d
)
, e.g. f = AND5.

Proof. Consider a set S of size |S| = k ≥ d + 1. Construct a ray γ ∈ null(M) using
Construction 2 with S1 = ∅, S2 = S and I = [d]∗ ∪ {k}. The values we need to compare
are

〈
Z + f

2 , γ
〉

and ε∥γ∥1. Note that Z(a) = f(a) = 0 for any a with |a| ≤ d. Hence,〈
γ, Z + f

2

〉
= γS

(
Z(S) + f(S)

2

)
. Therefore, if

∣∣∣Z(S) + f(S)
2

∣∣∣ > ε∥γ∥1
|γS | , then Z is good.

For a set T ⊆ S of size |T | ∈ {d + 1, . . . , k − 1}, γT = 0 by construction. Then,
|γS | =

∏k−(d+1)
i=1 i = (k − d − 1)!. Finally, for a set T ⊆ S of size |T | = t ≤ d, |γT | =∏k−1

i=d+1(i− t) = (k−1−t)!
(d−t)! . Note that there are

(
k
t

)
such sets T .

Hence, ∥γ∥1 = (k − d− 1)! +
∑d
t=0
(
k
t

) (k−1−t)!
(d−t)! . Dividing by |γS |, we get:

∥γ∥1

|γS |
= 1 +

d∑
t=0

(
k

t

)
(k − 1 − t)!

(d− t)!(k − d− 1)! = 1 +
d∑
t=0

k!
t!(d− t)!(k − d− 1)!(k − t)

= 1 +
(

k

d+ 1

) d∑
t=0

(
d

t

)
d+ 1
k − t

≤ 1 +
(

k

d+ 1

) d∑
t=0

(
d

t

)
d+ 1

d+ 1 − t

= 1 +
(

k

d+ 1

) d∑
t=0

(
d+ 1
t

)
= 1 +

(
k

d+ 1

)(
2d+1 − 1

)
≤ 2d+1

(
k

d+ 1

)
This proves the claim as desired. ◀

5 As noted by an anonymous reviewer.
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With the previous result, we have only a finite set of Zs remaining, that we need to prove
are good. We continue with our program of shrinking the set of remaining Zs. Here, we
consider some fixed value of Z(a) for each a with |a| < (d + 1)2. Then, we show how to
uniquely determine the remaining values of Z(a). In other words, if Z(a) does not take the
determined value for some a, then Z is good.

▶ Theorem 12. For any large enough n ∈ N, any d <
√
n− 1, and ε = 1

20n , the following
holds: Fix values of Z(b) for each point b ∈ {0, 1}n with |b| < (d + 1)2. Then, consider a
point a ∈ {0, 1}n with |a| ≥ (d+ 1)2. For each a′ ⊆ a with |a′| = |a| − (d+ 1)2, define the
following rational number:

Ra,a′ = 2
d+1∑
i=1

(−1)i
(
d+1
i

)(
d+i+1
i

) (∑a′⊆b⊆a:|b|=|a|−i2 Z(b) + f(b)
2((d+1)2

i2

) )
If the following holds for any a′:∣∣∣∣Z(a) +Ra,a′ + f(a)

2

∣∣∣∣ > 1√
n

Then, Z is good. Note that all choices of Z(a) ∈ Z, except for possibly a single choice, lead
to a good Z. In other words, Z(a) is uniquely determined.

Before we begin the proof, we would like to explain the expression in simple words as it may
look complicated at first glance. First, the expression only looks at Z(b)+ f(b)

2 where b belongs

to the Hamming sub-cube between a′ and a. The expression
∑

a′⊆b⊆a:|b|=|a|−i2 Z(b)+ f(b)
2

((d+1)2
i2 )

is

simply the average over the Hamming layer at distance i2 below a. This average is multiplied
with the coefficient 2 · (−1)i (d+1

i )
(d+i+1

i ) to obtain the expression. Now, we begin the proof.

Proof. Fix a point a ∈ {0, 1}n with |a| ≥ (d+ 1)2, and choose a subset a′ ⊆ a with |a′| =
|a|−(d+1)2. Use Construction 10 with n, d, S1 = a′, S2 = a, I =

{
(d+ 1)2 − i2 : i ∈ [d+ 1]∗

}
,

to obtain γ ∈ nullspace(M). We denote the polynomial qI from the construction by q for
brevity.

Now, assume that the condition from the statement holds, which is as follows:∣∣∣∣Z(a) +Ra,a′ + f(a)
2

∣∣∣∣ > 1√
n

(1)

Then, we claim that Z is good, with γ as the witness, i.e.,

∣∣∣∣〈Z + f

2 , γ
〉∣∣∣∣ > ε∥γ∥1 (2)

To see why 1 implies 2, consider the following equalities:〈
Z + f

2 , γ
〉

=
∑

b∈{0,1}n

(
Z(b) + f(b)

2

)
γb (3)

=
∑

a′⊆b⊆a

(
Z(b) + f(b)

2

)
γb (4)

=
d+1∑
i=0

(−1)i
2
q((d+ 1)2 − i2)

∑
a′⊆b⊆a:|b|=|a|−i2

(
Z(b) + f(b)

2

)
(5)
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Equality 3 follows by expanding the expression. Note that γb = 0 for any b with either a′ ̸⊆ b

or b ̸⊆ a, as per the construction of γ. Hence, equality 4 follows. Finally, we substitute the
values of γb to obtain equality 5.

Now, to calculate the RHS of inequality 2, expand the ℓ1-norm of γ as ∥γ∥1 =∑d+1
i=0

((d+1)2

i2

)∣∣q((d+ 1)2 − i2)
∣∣. We divide the expression of the inner-product, as well

as the ℓ1-norm, to modify inequality 2 as:∣∣∣∣∣∣∣∣∣
d+1∑
i=0

q((d+ 1)2 − i2)
q((d+ 1)2)

 ∑
a′⊆b⊆a

|a|−|b|=i2

Z(b) + f(b)
2


∣∣∣∣∣∣∣∣∣ > ε

d+1∑
i=0

(
(d+ 1)2

i2

)∣∣q((d+ 1)2 − i2)
∣∣

q((d+ 1)2)

Note that q((d+ 1)2) > 0, hence, dividing by q((d+ 1)2) does not change the direction of the
inequality. Next, we calculate

((d+1)2

i2

) q(i2)
q((d+1)2) as follows. Recall the expression for q(t) =

qI(t) =
∏
i∈[(d+1)2]∗\I(t− i). Hence, we get the following expression for

((d+1)2

i2

) q((d+1)2−i2)
q((d+1)2) :(

(d+ 1)2

i2

)
q((d+ 1)2 − i2)
q((d+ 1)2) =

(
(d+ 1)2

i2

)∏
j∈[(d+1)2]∗\I((d+ 1)2 − i2 − j)∏
j∈[(d+1)2]∗\I((d+ 1)2 − j)

=
(

(d+ 1)2

i2

)∏
j∈[(d+1)2−2,(d+1)2−3,...,1]((d+ 1)2 − i2 − j)∏
j∈[(d+1)2−2,(d+1)2−3,...,1]((d+ 1)2 − j)

=
(

(d+ 1)2

i2

)∏
j∈[2,3,5,...,(d+1)2−1](j − i2)∏
j∈[2,3,5,...,(d+1)2−1](j)

=
∏
j∈[d+1] j

2∏
j∈[d+1]∗\{i}(j − i)(j + i) = (−1)i · 2 ·

(
d+1
i

)(
d+i+1
i

)
The calculation here is similar to the calculation performed in Section 6.1 of [8], following
Fact 32 in the survey. Now, we can replace the final expression in the LHS of inequality 2 to
get the LHS of inequality 1. Moreover, this calculation allows us to infer the following upper
bound on the absolute value of the final ratio, for any i ∈ [d+ 1]:∣∣∣∣((d+ 1)2

i2

)
q((d+ 1)2 − i2)
q((d+ 1)2)

∣∣∣∣ ≤ 2 (6)

Hence, we get that ∥γ∥1
q((d+1)2) ≤ 2|I| = 2(d + 2) ≤ 4

√
n for large enough n. Therefore, if∣∣∣Z(a) +Ra,a′ + f(a)

2

∣∣∣ > 1√
n

≥ 1
20n4

√
n holds, then Z is good, with γ as the witness. This

completes the proof. ◀

3.1 Proposed Directions
Finally, we pose the question to extend the set of good Zs.

▶ Open Problem 1. Find witnesses to extend the set of good Zs.

For example, can one find feasible solutions to prove that any Z with {−1, 0, 1} as its
range is good?

▶ Open Problem 2. Prove that any Z : {0, 1}n → {−1, 0, 1} is good.

Such statements will complement Theorem 11, as they will prove lower bounds on
the values of Z. We believe that finding more structure in nullspace(M(n, d)) will help
toward these problems. To that effect, we present a simple construction for vectors in
nullspace(M(n, d)), which we could not find in current literature.

ITCS 2026



88:12 Lower Bounds and Separations for Torus Polynomials

▶ Construction 3. Fix some n ∈ N, d ∈ N such that d <
⌊
n
2
⌋
, and k ∈ N such that

d < k < n− d. Construct a vector γ ∈ R2n , indexed by 2[n], as follows:
If the indexing set T has size |T | ̸= k, then set γT = 0. Otherwise, for each i ∈ [d+ 1],

check whether |T ∩ {i, d+ 1 + i}| = 1. If the check above fails for some i ∈ [d+ 1], set γT = 0.
Otherwise, T intersects exactly once with each pair {i, d + 1 + i}. Then, set γT =

(−1)|T∩[d+1]|.
Output γ.

We claim that the construction above produces a vector γ ∈ nullspace(M(n, d)). The
proof follows by a simple argument, which we do not present.

▶ Lemma 13. For any n ∈ N, d ∈ N and k ∈ N, such that d < k < n− d, Construction 3
produces a vector γ ∈ nullspace(M(n, d)).

Intuitively speaking, the construction above produces a vector with balanced −1 and 1
entries on the given Hamming layer. Hence, it may help with Zs that are highly unbalanced
along the entries of this vector. We leave it open to rule out more Zs based on this vector.

▶ Open Problem 3. Use the vector from Construction 3 to extend the set of good Zs.

4 Lower Bounds for AND

In this section, we prove a lower bound for torus polynomials approximating AND. We
restate the result below.

▶ Theorem 6. Any torus polynomial, that ε-approximates AND, must have degree Ω
(
log
( 1
ε

))
.

We plan to use Theorem 8 to prove this result. In this task, the main challenge is that
there are infinitely many choices for Z, and we need to find a feasible solution γ for each
choice. To make this task easier, we find a vector γ ∈ nullspace(M(n, d)) with integer entries
and small ℓ1-norm. This vector will serve as a feasible solution for any Z, if it satisfies the
conditions that we detail in the next statement.

▶ Lemma 14. Fix a Boolean function f : {0, 1}n → {0, 1} and some d ∈ [n− 1]. Consider a
vector γ ∈ nullspace(M(n, d)) with integer entries, i.e. γ ∈ Z2n , such that ⟨f, γ⟩ is an odd
integer. Then, for any Z : {0, 1}n → Z and ε < 1

2∥γ∥1
, the following holds:∣∣∣∣〈Z + f

2 , γ
〉∣∣∣∣ > ε∥γ∥1

Proof. Let ⟨f, γ⟩ = 2z + 1 for some integer z ∈ Z. Then,
〈
f
2 , γ
〉

= z + 1
2 . Fix a function

Z : {0, 1}n → Z. Then, ⟨Z, γ⟩ = z′ for some integer z′ ∈ Z. Hence,
〈
Z + f

2 , γ
〉

= z′ + z + 1
2 .

Consider the following two cases:
z + z′ ≥ 0. In this case,

〈
Z + f

2 , γ
〉

≥ 1
2 .

z + z′ ≤ −1. In this case,
〈
Z + f

2 , γ
〉

≤ − 1
2 .

In both the cases, we observe that
∣∣∣〈Z + f

2 , γ
〉∣∣∣ ≥ 1

2 . Note that by the choice of ε < 1
2∥γ∥1

,
we have ε∥γ∥1 <

1
2 . This completes the proof. ◀
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To use the preceding statement for f = ANDn, we proceed as follows. For a vector
γ ∈ nullspace(M), its inner product with ANDn is ⟨γ,ANDn⟩ = γ[n]. Hence, we need a
vector γ ∈ nullspace(M) ∩ Z2n , such that γ[n] is odd and ∥γ∥1 is not too large. We find this
vector in a basis for nullspace(M), we will find the basis useful later, such that each vector
in that basis is integral and has a small enough ℓ1-norm. One such vector γ in this basis will
have

∣∣∣γ[n]

∣∣∣ = 1. We present the construction below.

▶ Construction 4. Construct a matrix B as follows.
Input: n, d ∈ [n− 1].
Output: A matrix B ∈ M2n×( n

>d)(R).
Construction: For any set S ⊆ [n] with |S| ≥ d+ 1, consider its elements (s0, s1, . . . , s|S|−1)

in the increasing order s0 < s1 < . . . < s|S|−1. Denote S[> d] = {sd+1, . . . , s|S|−1} as the
set remaining after ignoring the first d elements.
Now, create a matrix B, of size 2n ×

(
n
>d

)
, and index its rows by elements of 2[n] and

columns by elements of
([n]
>d

)
. For 1 ≤ i ≤ 2n and 1 ≤ j ≤

(
n
>d

)
, set the corresponding

entry of B as Bi,j = (−1)|Si|+|Sj | · 1Si⊆Sj
· 1Sj [>d]⊆Si

. Here, Si and Sj denote the sets
indexing the ith row and the jth column of B, respectively.
Output B.

We claim that this construction produces a basis for nullspace(M(n, d)). A routine
calculation proves the correctness of the construction, which we omit here (refer to the full
version for a proof).

▷ Claim 15. Construction 4, on input n, d ∈ [n− 1], outputs a basis for nullspace(M(n, d)).

We use this basis to prove Theorem 6 as follows.

Proof of Theorem 6. First, construct B using Construction 4, with n and d as the inputs
to the construction. Now, denote by γ the column of B indexed by [n]. Clearly,

∣∣∣γ[n]

∣∣∣ = 1,
hence, ⟨AND, γ⟩ is an odd integer. Moreover, ∥γ∥1 = 2d+1. Therefore, if we apply Lemma 14,
we get the following lower bound for ε < 1

2·2d+1 : any torus polynomial that ε-approximates
the AND function must have degree more than d. This completes the proof. ◀

▶ Remark 16. Consider the probabilistic polynomial that approximates AND over F2 with
probability ε, from [23], and combine it with [4, Lemma 14]. Then, one gets the following
upper bound on degε(AND).

▶ Lemma 17 ([4, 23]). For any ε > 0, degε(AND) ≤ log2 (n
ε

)
.

Hence, the lower bound we have proved in Theorem 6 is only quadratically away from
the upper bound for any ε = 1

nΩ(1) .

Although we had infinitely many linear programs to work with, we have only used one
vector for proving their feasibility. One could use multiple vectors in nullspace(M(n, d)),
such that for each dual corresponding to Z ∈ Z2n , one of these vectors is a feasible solution.
By using multiple vectors, we believe that one can get stronger degree lower bounds, bringing
it closer to the upper bound. We leave this task as an open problem.

▶ Open Problem 4. Bridge the gap between the lower and upper bound for the AND function.
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4.1 The Very Small Error Case
The literature on polynomial approximations usually focuses on inverse-polynomial error
regime. We study the case where the error is very small, as it allows us to partially answer a
question posed in [4, Problem 6]. In [4, Problem 6], the authors ask about the relationship
between deg 1

3
(f) and degε(f). In general, one can ask if there is an error-reduction procedure

for torus polynomials. This procedure should take as input ε, ε′ < ε,degε(f), and output an
estimate for degε′(f). Ideally, the output should not depend on f , and the estimate should
be reasonably close to optimal.

In what follows, we prove that torus polynomials require the same degree to approximate
AND and MAJORITY when the error is very small. Now, if we assume Conjecture 5, then
the degree required to 1

20n -approximate AND is much smaller than the degree required
for MAJORITY. Hence, any error-reduction procedure as described above will produce a
suboptimal output if it does not depend on the function being approximated, conditionally
answering [4, Problem 6] for the error-regime ε < 1

2n+1 . Formally, we prove the following
result.

▶ Theorem 18. Depending on the value of ε, the following cases hold.
If ε < 1

2n+1 , then the following holds for f = MAJORITY as well as f = AND, and
infinitely many n. Any torus polynomial that ε-approximates f has degree n.
If ε ≥ 1

2n+1 , then the following holds for any Boolean function f : {0, 1}n → {0, 1}. There
exists a torus polynomial P of degree at most n− 1 approximating f within an error of ε.
Moreover, if f is symmetric, then we can take P to be symmetric as well.

We do not prove the statement here (refer to the full version for a proof), as it is a
special case of the proof of Theorem 6. The upper bound above only states the existence of
torus polynomials approximating Boolean functions for a tiny error. We leave it as an open
problem to explicitly construct them.

▶ Open Problem 5. For ε = 1
2n+1 and a given function f : {0, 1}n → {0, 1}, construct a

torus polynomial of degree at most n− 1 that ε-approximates f .

5 Lower Bounds for the Symmetric Case

In this section, we prove lower bounds against symmetric torus polynomials approximating
symmetric functions. To describe the general method, we proceed along the lines of the
proof for Theorem 8, with two crucial modifications. The polynomial is symmetric if each
monomial of the same degree has the same coefficient, which reduces the number of variables
to d+ 1. Similarly, as the function is symmetric, the number of constraints reduces to n+ 1.
To describe the much shorter linear program we obtain, we first construct the following
matrix.

▶ Construction 5. Define the matrix M̂(n, d) of size (d+1)×(n+1). For 0 ≤ j ≤ d, 0 ≤ i ≤ n,
the corresponding entry is M̂j,i =

(
i
j

)
.

Now, the analogue of Theorem 8 for symmetric torus polynomials is as follows. Note that
we define symmetric functions with [n]∗ as the domain, such that f(i) is the output when
the input has Hamming weight i.

▶ Theorem 19. The following statements are equivalent for any n, d, ε < 1
10 , and any

symmetric function f : [n]∗ → {0, 1}.
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Any symmetric torus polynomial that ε-approximates f has degree more than d.
For any function Z : [n]∗ → Z, there exists a vector ψ ∈ nullspace(M̂(n, d)) such that:∣∣∣∣〈Z + f

2 , ψ
〉∣∣∣∣ > ε∥ψ∥1

The proof of this statement is very similar to the proof of Theorem 8, which we skip.
The challenge here is also similar, having to deal with infinitely many linear programs, and
proving that they are all feasible. We proceed similar to the previous section, by choosing a
short enough ψ with integer entries, which gives us the following analogue of Lemma 14.

▶ Lemma 20. Fix a symmetric Boolean function f : [n]∗ → {0, 1} and some d ∈ [n]∗.
Consider a vector ψ ∈ nullspace(M̂(n, d)) with integer entries, i.e. ψ ∈ Zn+1, such that
⟨f, ψ⟩ is an odd integer. Then, for any Z : [n]∗ → Z and ε < 1

2∥ψ∥1
, the following holds:∣∣∣∣〈Z + f

2 , ψ
〉∣∣∣∣ > ε∥ψ∥1

Now, we recall the statement of our main lower bound against symmetric torus polynomial
approximations.

▶ Theorem 7. Any symmetric torus polynomial, that 1
20n -approximates AND, must have

degree Ω
(√

n
log(n)

)
.

Proof. To prove this statement, we claim that for any d ≤ O

(√
n

log(n)

)
, nullspace(M̂(n, d))

contains a vector ψ with ℓ∞-norm 1. Moreover, the last entry of ψ is ψn = 1. Hence, its
inner product with the AND function is ⟨AND, ψ⟩ = 1, which is an odd integer. We state the
claim formally below.

▷ Claim 21. For some universal constant c, consider any large enough n ∈ N and d ≤√
n

c log(n) . Then, nullspace(M(n, d)) contains a vector ψ with ∥ψ∥∞ = 1 and ψn = 1.

Assume, for now, that the claim is true. Then, we have ⟨AND, ψ⟩ = 1. Further, we get
∥ψ∥1 ≤ (n+ 1)∥ψ∥∞ ≤ n+ 1. Finally, we use Lemma 20, using ψ, which we can apply for
any ε ≤ 1

2∥ψ∥1
≤ 1

2(n+1) . Note that our choice of ε = 1
20n satisfies this inequality for large

enough n. This completes the proof. ◀

▶ Remark 22. Buhrman, Cleve, de Wolf and Zalka [6] proved an upper bound of
O
(√

n log
( 1
ε

))
on the degree of a real polynomial approximating the AND function within

an error of ε. Note that we can consider this real polynomial, after symmetrizing, as a
symmetric torus polynomial approximating the AND function within an error of ε. For
ε = 1

O(n) , this gives an upper bound of O(
√
n log(n)) on the degree. Hence, the lower bound

of Ω
(√

n
log(n)

)
we have proved above is tight within logarithmic factors in n.

We also get a separation between symmetric torus polynomials and asymmetric torus
polynomials as a corollary of Theorem 7.

▶ Corollary 23. Symmetric torus polynomials are weaker than their asymmetric counterparts.
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Proof. We compare the symmetric torus polynomial lower bound with the upper bound from
Lemma 17. Using Lemma 17, we get deg 1

20n
(AND) ≤ log2(n). On the other hand, symmetric

torus polynomials require much higher degree to 1
20n -approximate AND. This proves the

separation of their power. ◀

We complete the remaining part of the proof for Theorem 7, which is to prove Claim 21.
For this purpose, we will need the following statement from [5].

▶ Theorem 24 ([5]). Consider a full-rank integer matrix B of size n × m, with n > m.
Then, L(B) = BZm contains a non-zero vector v ∈ Zn with its ℓ∞-norm bounded by:

∥v∥∞ ≤

(√
det(BTB)
D

) 1
n−m

Here, D is the GCD of all m×m minors of B.

To prove Claim 21 using Theorem 24, we first describe a basis for nullspace(M̂(n, d)).
We state the construction without proof, omitting tedious calculations.

▶ Lemma 25. For n ∈ N, and d ∈ [n−1]∗, construct a matrix B̂(n, d), of size (n+1)×(n−d).
Keep the following entry for i ∈ [n]∗ and j ∈ [n− d− 1]∗: B̂(n, d)i,k = (−1)i−k

(
d+1
i−k
)
.

Then, the columns of B̂(n, d) form a basis for M̂(n, d).

Now, to apply Theorem 24, we need to estimate det(B̂(n, d)T B̂(n, d)). We state the result
below without proof, omitting tedious calculations (refer to the full version for a proof).

▶ Lemma 26. There exists a universal constant c such that det(B̂(n, d)
T
B̂(n, d)) ≤ 2cd2 log(n).

Finally, we need the following statement to find a vector ψ with an odd entry at the
desired place. Informally speaking, consider a vector ψ such that ψn = 0. Then, we note
that B̂ is a column-circulant matrix, with 0s beyond the two main diagonals. Hence, we can
shift ψ to obtain ψ′ such that ψ′

n contains the last non-zero entry of ψ. We formalize this in
the statement below, stated without proof.

▶ Lemma 27. Consider a vector ψ ∈ nullspace(M̂(n, d)) such that the maximum index i
where ψi ̸= 0 is i0. Define the following vector ψ′:

ψ′
i =

{
ψi+i0−n n− i0 ≤ i ≤ n

0 0 ≤ i < n− i0

Then, ψ′ ∈ nullspace(M̂(n, d)).

Now, we are ready to prove Claim 21, as follows.

Proof of Claim 21. First, choose any d ≤
√

n
c log(n) . Then, apply Theorem 24 for

nullspace(M̂(n, d)) with B̂(n, d) as its basis. Note that B̂(n, d) contains a minor, of
size (n − d) × (n − d), with value 1. Hence, we get D = 1 when we apply The-
orem 24. Therefore, there exists a non-zero vector ψ ∈ nullspace(M̂) ∩ Zn+1 with
∥ψ∥∞ ≤ 2c

n
c log(n) log(n) 1

2(n−d) ≤
√

2. As ∥ψ∥∞ must be a positive integer, and
√

2 < 2,
this shows that ∥ψ∥∞ = 1.

Now, if ψn = ±1, then, either ψ or −ψ satisfies the claimed conditions. Otherwise, if
ψn = 0, use Lemma 27 to obtain ψ′ from ψ. Note that ∥ψ′∥1 = ∥ψ∥1 ≤ n+ 1, and |ψ′

n| = 1.
Hence, we get the desired lower bound using ψ′. This completes the proof of the claim. ◁
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5.1 Error-Degree Trade-off
The lower bound described in Theorem 7 applies to a particular error. It is natural to
attempt to prove a stronger lower bound for a tighter error. Indeed, we are able to prove
stronger lower bounds for tighter errors, but for MAJORITY. This significantly strengthens
the lower bound from [4, Corollary 23]. Following is the statement of the lower bound.

▶ Theorem 28. Fix r ∈ R, r ≥ 0. For any ε ≤ 2−Ω(logr+1(n)), any symmetric torus
polynomial that ε-approximates MAJORITYn has degree at least Ω

(√
n logr(n)

)
.

To prove this statement, we plan to use Minkowski’s Theorem on the length of shortest
vectors in a lattice. Following is the version we need.

▶ Lemma 29 (Minkowski’s Theorem [19]). Consider a full-rank integer matrix B of size
n×m, with n > m. Then, the lattice L(B) = BZm contains a vector v ̸= 0 with

∥v∥1 ≤
√
mndet(BTB) 1

2n

We plan to produce short vectors using Minkowski’s Theorem, and then invoke Lemma 20
to argue the lower bound. Toward this, we need to argue that ⟨MAJORITY, ψ⟩ should be
odd for a short vector ψ which, unfortunately, we could not prove. We prove the lower bound
indirectly, by looking at a wider class of symmetric functions. The ∆w function is defined as
follows: ∆w(x) = 1 if and only if |x| = w. We obtain the following lower bound for these
functions.

▶ Lemma 30. For any large enough n ∈ N, there exists a w ∈ [n]∗, such that the following
holds:

Any symmetric torus polynomial that ε-approximates the ∆w function over n variables,
for ε ≤ 2−Ω(logr+1(n)), must have degree Ω

(√
n logr(n)

)
.

Proof. We start by appealing to Minkowski’s theorem (Lemma 29).
Say d = o

(√
n logr(n)

)
for some r ≥ 0, and denote M̂ = M̂(n, d). We use

Lemma 26, together with Minkowski’s theorem, to get that there exists a non-zero vector
ψ ∈ nullspace(M̂) ∩Zn+1 with ∥ψ∥1 ≤ n2o(logr+1(n)). We want to choose a w, and prove the
lower bound with respect to that ∆w. Hence, we need to find a w such that ⟨ψ,∆w⟩ is odd.

Consider a non-zero vector ψ ∈ nullspace(M̂) ∩ Zn+1 with the smallest ℓ1-norm. At
least one of the entries of ψ must be odd. Otherwise, if they are all even, then ψ/2 has
strictly smaller ℓ1-norm. The containment ψ/2 ∈ nullspace(M̂) ∩ Zn+1 follows, because
nullspace(M̂) is a vector space, and ψ/2 has integral entries. This is a contradiction.

This still does not tell us which entry of ψ will be odd. Hence, it is still not clear which
∆w we should choose. Note that we have to choose w to write the family of linear programs,
all of them must use the same function f = ∆w. To make our life easy, we turn the problem
over its head.

We notice that we just need to choose w independent of Z, but it can depend on n, d.
Hence, as the vector ψ with the smallest ℓ1-norm depends only on n, d, we can choose w
based on ψ. This is exactly what we do, we choose w such that ψw is odd. Note that at
least one such w must exist, we pick one of them arbitrarily. This completes the proof of the
statement. ◀

Now, we apply a trick employed in the proof of [4, Corollary 23]. We describe it below
without proof, as it is very similar to [4, Lemma 22].
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▶ Lemma 31. For any r ≥ 0, ε ≤ 2−Ω(logr+1(n)), and large enough n, the following holds:
If there exists a symmetric torus polynomial of degree o

(√
n logr(n)

)
that ε-approximates

MAJORITY, then for any w ∈ [n]∗, there exists a symmetric torus polynomial of degree
o
(√

n logr(n)
)

that ε-approximates ∆w.

Now, we can finish the proof of Theorem 28 as follows.

Proof of Theorem 28. For some r ∈ R, r ≥ 0, consider ε = 2−Ω(logr+1(n)). Assume that
there exists a symmetric torus polynomial that ε-approximates MAJORITY with degree
d = o

(√
n logr(n)

)
. Then, for each w ∈ [n]∗, there exists a symmetric torus polynomial that

ε-approximates ∆w. Moreover, each of these polynomials have degree d = o
(√

n logr(n)
)

.
This contradicts Lemma 30, completing the proof of the theorem. ◀

To us, it is a bit unsatisfactory that we cannot prove this lower bound for AND. Note
that the main hurdle for us is not knowing which entry of ψ is odd. If we can prove that ψn
is odd, then the lower bound goes through for AND. Hence, we state a conjecture that will
prove the error-degree trade-off for AND as well. In fact, we believe that the following holds,
which is stronger than what we need.

▶ Conjecture 32. For any n ∈ N, 0 ≤ d < n, there is a vector ψ ∈ nullspace(M̂(n, d))∩Zn+1

with the smallest ℓ1-norm and ψn = 1.
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