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Abstract
We show that there is a better-than-brute-force algorithm that, when given a small
constant-depth Boolean circuit C made up of gates that compute constant-degree
Polynomial Threshold functions or PTFs (i.e., Boolean functions that compute signs
of constant-degree polynomials), counts the number of satisfying assignments to C in
significantly better than brute-force time. Formally, for any constants d, k, there is an
ε > 0 such that the zero-error randomized algorithm counts the number of satisfying
assignments to a given depth-d circuit C made up of k-PTF gates such that C has
at most n1+ε many wires. The algorithm runs in time 2n−n�(ε)

. Before our result,
no algorithm for beating brute-force search was known for counting the number of
satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit with
linearly many wires).We give two different algorithms for the case of a single PTF.
The first uses a learning algorithm for learning degree-1 PTFs (or Linear Threshold
Functions) using comparison queries due to Kane, Lovett and Moran (STOC 2018),
and the second uses a proof of Hofmeister (COCOON 1996) for converting a degree-1
PTF to a depth-two threshold circuit with small weights. We show that both these
ideas fit nicely into a memoization approach that yields the #SAT algorithms.

1 Introduction

This paper adds to the growing line of work on circuit-analysis algorithms, where we
are given as input a Boolean circuit C from a fixed class C computing a function f :
{−1, 1}n → {−1, 1},1 and we are required to compute some parameter of the function
f .A typical example of this is the questionof satisfiability, i.e.whether f is the constant

1 We work with the {−1, 1} basis for Boolean functions, which is by now standard in the literature. (See
for instance [24].) Here −1 stands for True and 1 stands for False.
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function 1 or not. In this paper, we are interested in computing #SAT( f ), which is the
number of satisfying assignments of f (i.e. |{a ∈ {−1, 1}n | f (a) = −1}|).

Problems of this form can always be solved by “brute-force” in time poly(|C |) · 2n
by trying all assignments to C . The question is can this brute-force algorithm be
significantly improved, say to time 2n/nω(1) when C is small, say |C | ≤ nO(1).

Such algorithms, intuitively are able to distinguish a small circuit C ∈ C from a
“black-box” and hence find some structure in C . This structure, in turn, is useful in
answering other questions about C, such as proving lower bounds against the class
C.2 There has been a large body of work in this area, a small sample of which can
be found in [26,27,33,37]. A striking result of this type was proved by Williams [33]
who showed that for many circuit classes C, even co-non-deterministic satisfiability
algorithms running in better than brute-force time yield lower bounds against C.

Recently, researchers have also uncovered tight connections between many com-
binatorial problems and circuit-analysis algorithms, showing that even modest
improvements over brute-force search can be used to improve long-standing bounds
for these combinatorial problems (see, e.g., [1–3,38]). This yields further impetus in
improving known circuit-analysis algorithms.

This paper is concerned with #SAT algorithms for constant depth threshold circuits,
denoted as TC0, which are Boolean circuits where each gate computes a linear thresh-
old function (LTF); an LTF computes a Boolean function which accepts or rejects
based on the sign of a (real-valued) linear polynomial evaluated on its input. Such cir-
cuits are surprisingly powerful: for example, they can perform all integer arithmetic
efficiently [4,10], compute conjectured families of pseudorandom functions [23] (and
hence are not amenable to Natural lower bound proof techniques in the sense defined
by Razborov and Rudich [28]) and are at the frontier of our current lower bound
techniques [8,21].

It is natural, therefore, to try to come up with circuit-analysis algorithms for thresh-
old circuits. Indeed, there has been a large body of work in the area (reviewed in
the Previous Work paragraph later in the Introduction), but some extremely simple
questions remain open.

An example of such a question is the existence of a better-than-brute-force algorithm
for satisfiability of degree-k PTFs where k is a constant greater than 2. Informally,
the question is the following: we are given a degree-k polynomial Q(x1, . . . , xn) in
n Boolean variables and we ask if there is any Boolean assignment a ∈ {−1, 1}n to
x1, . . . , xn such that Q(a) < 0. Surprisingly, no algorithm is known for this problem
that is significantly better than 2n time.3

Note that for a linear polynomial (i.e. k = 1), this problem is trivial. For k = 2 the
problem is already non-trivial. While not noted explicitly in the literature, a better-
than-brute-force algorithm for satisfiability of 2-PTFs is implied by the results from
[32,35]. However, the stronger counting variant of this problem for 2-PTFs is open as
far as we know.

2 This intuition appears in Section 4 of [34].
3 An algorithm was claimed for this problem in the work of Sakai, Seto, Tamaki and Teruyama [31].
Unfortunately, the proof of this claim only works when the weights are suitably small. See Footnote 1 on
page 4 of [18].
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In this paper, we solve the counting variant of this problem for any constant-degree
PTFs. We start with some definitions and then describe this result.

Definition 1 (Polynomial Threshold Functions) A Polynomial Threshold Function
(PTF) on n variables of degree-k is a Boolean function f : {−1, 1}n → {−1, 1}
such that there is a degree-k multilinear polynomial P(x1, . . . , xn) ∈ R[x1, . . . , xn]
that, for all a ∈ {−1, 1}n, satisfies f (a) = sgn(P(a)). (We assume that P(a) �= 0 for
any a ∈ {−1, 1}n .)

In such a scenario, we call f a k-PTF. In the special case that k = 1, we call f a
Linear Threshold function (LTF). We also say that the polynomial P sign-represents
f .
When P ∈ Z[x1, . . . , xn], we define the weight of P , denoted w(P), to be the bit-

complexity of the sum of the absolute values of all the coefficients of P . In particular,
the coefficients of P are integers in the range [−2w(P), 2w(P)].

We now formally define the #SAT problem for k-PTFs. Throughout, we assume
that k is a constant and not a part of the input.

Definition 2 (#SAT problem for k-PTFs) The problem is defined as follows.
Input: A k-PTF f , specified by a degree-k polynomial P(x1, . . . , xn) with integer

coefficients.4

Output: The number of satisfying assignments to f . That is, the number of a ∈
{−1, 1}n such that P(a) < 0.

Weuse #SAT( f ) to denote this output.We say that the input instance has parameters
(n, M) if n is the number of input variables and w(P) ≤ M .

Remark 3 An interesting setting of M is poly(n) since any k-PTF can be represented
by an integer polynomial with coefficients of bit-complexity at most Õ(nk) [22].
However, note that our algorithms work even when M is exp(no(1)), i.e. when the
weights are slightly short of doubly exponential in n.

We give a better-than-brute-force algorithm for #SAT(k-PTF). Formally we prove
the following theorem.

Theorem 4 Fix any constant k. There is a deterministic algorithm that solves the #SAT
problem for k-PTFs in time poly(n, M) · 2n−S where S = �̃(n1/(k+1)) and (n, M)

are the parameters of the input k-PTF f . (The �̃(·) hides factors that are inverse
polylogarithmic in n.)

Remark 5 An anonymous ITCS 2019 referee pointed out to us that from two results
of Williams [32,35], it follows that satisfiability for 2-PTFs can be solved in 2n−�(

√
n)

time. Note that this is better than the runtime of our algorithm. However, the method
does not seem to extend to k ≥ 3.

Using a different approach, we give another algorithm for the same problem. This
result is incomparable to Theorem 4.While the running time is better (and comparable

4 It is known [22] that such a representation always exists.
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to Williams’ algorithm mentioned above when k = 2) as long as M is subexponential
in n, the algorithm is zero-error randomized.5

Theorem 6 Fix any constant k. There is a zero-error randomized algorithm that solves
the #SATproblem for k-PTFs in time poly(n, M)·2n−S where S = �(n1/k) and (n, M)

are the parameters of the input k-PTF f .

We then extend this result to a powerful model of circuits called k-PTF circuits,
where each gate computes a k-PTF. This model was first studied by Kane, Kabanets
and Lu [17] who proved strong average case lower bounds for slightly superlinear-
size constant-depth k-PTF circuits. Using these ideas, Kabanets and Lu [18] were able
to give a #SAT algorithm for a restricted class of k-PTF circuits, where each gate
computes a PTF with a subquadratically many, say n1.99, monomials (while the size
remains the same, i.e. slightly superlinear).6 A reason for this restriction on the PTFs
was that they did not have an algorithm to handle even a single degree-2 PTF (which
can have �(n2) many monomials).

Building on our #SAT algorithm for k-PTFs and the ideas of [18], we are able
to handle general k-PTF circuits of slightly superlinear size. We state these results
formally below.

We first define k-PTF circuits formally.

Definition 7 (k-PTF circuits) A k-PTF circuit on n variables is a Boolean circuit on
n variables where each gate g of fan-inm computes a fixed k-PTF of itsm inputs. The
size of the circuit is the number of wires in the circuit, and the depth of the circuit is
the longest path from an input to the output gate.7

The problems we consider is the #SAT problem for k-PTF circuits, defined as
follows.

Definition 8 (#SAT problem for k-PTF circuits) The problem is defined as follows.
Input: A k-PTF circuit C , where each gate g is labelled by an integer polynomial

that sign-represents the function that is computed by g.
Output: The number of satisfying assignments to C .
We use #SAT(C) to denote this output.We say that the input instance has parameters

(n, s, d, M) where n is the number of input variables, s is the size of C , d is the depth
of C and M is the maximum over the weights of the degree-k polynomials specifying
the k-PTFs in C . We will say that M is the weight of C , denoted by w(C).

We now state our result on #SAT for k-PTF circuits. The following result also
implies a zero-error randomized version of Theorem 4.

5 A previous version of this paper only gave a bounded-error randomized algorithm for this problem.
However, an anonymous reviewer generously showed us how to modify our algorithm to get a a zero-error
randomized algorithm.
6 Their result also works for the slightly larger class of PTFs that are subquadratically sparse in the {0, 1}-
basis with no restriction on degree. Our result can also be stated for the larger class of polynomially sparse
PTFs, but for the sake of simplicity, we stick to constant-degree PTFs.
7 Note, crucially, that only the fan-in of a gate counts towards its size. So any gate computing a k-PTF on
m variables only adds m to the size of the circuit, though of course the polynomial representing this PTF
may have ≈ mk monomials.
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Theorem 9 Fix any constants k, d. Then the following holds for some constant εk,d >

0 depending on k, d. There is a zero-error randomized algorithm that solves the #SAT
problem for k-PTF circuits of size at most s = n1+εk,d with probability at least 1/4 and
outputs ? otherwise. The algorithm runs in time poly(n, M) · 2n−S, where S = nεk,d

and (n, s, d, M) are the parameters of the input k-PTF circuit.

We note that in the Williams [33] framework of proving lower bounds via satis-
fiability algorithms, zero-error randomized algorithms are as good as deterministic
algorithms (as noted already above, even co-non-deterministic algorithms are good
enough).However, the above theoremdoes not imply anynew lower bounds, as slightly
superlinear-size k-PTF circuits already follows from the work of Kane, Kabanets and
Lu [17].

Previous work Satisfiability algorithms for TC0 have been widely investigated.
Impagliazzo, Lovett, Paturi and Schneider [14,16] give algorithms for checking satisfi-
ability of depth-2 threshold circuits with O(n) gates. The former result was improved
by Chen and Santhanam [6]. An incomparable result was proved by Williams [36]
who obtained algorithms for subexponential-sized circuits from the class ACC0 ◦LTF,
which is a subclass of subexponential TC0.8 For the special case of k-PTFs (and gen-
eralizations to sparse PTFs over the {0, 1} basis) with small weights, a #SAT algorithm
was devised by Sakai et al. [31].9 The high-level idea of our algorithm is the same as
theirs.

For general constant-depth threshold circuits, the first satisfiability algorithm was
given by Chen, Santhanam and Srinivasan [7]. In their paper, Chen et al. gave the first
average case lower bound for TC0 circuits of slightly super linear size n1+εd , where
εd depends on the depth of the circuit. (These are roughly the strongest size lower
bounds we know for general TC0 circuits even in the worst case [15].) Using their
ideas, they gave the first (zero-error randomized) improvement to brute-force-search
for satisfiability algorithms (and indeed even #SAT algorithms) for constant depth TC0

circuits of size at most n1+εd .
The lower bound results of [7] were extended to the much more powerful class

of k-PTF circuits (of roughly the same size as [7]) by Kane, Kabanets and Lu [17].
In a follow-up paper, Kabanets and Lu [18] considered the satisfiability question for
k-PTF circuits, and could resolve this question in the special case that each PTF
is subquadratically sparse, i.e. has n2−�(1) monomials. One of the reasons for this
sparsity restriction is that their strategy does not seem to yield a SAT algorithm for a
single degree-2 PTF (which is a depth-1 2-PTF circuit of linear size).

8 ACC0 ◦LTF is a subclass of TC0 where general threshold gates are allowed only just above the variables.
All computations above these gates are one of AND, OR or Modular gates (that count the number of inputs
modulo a constant). It is suspected (but not proved) that subexponential-sizedACC0 circuits cannot simulate
even a single general threshold gate. Hence, it is not clear if the class of subexponential-sized ACC0 ◦ LTF
circuits contains even depth-2 TC0 circuits of linear size.
9 More specifically, the algorithm of Sakai et al. [31] works as long as the weight of the input polynomial
P ∈ Z[x1, . . . , xn ] is bounded by exp(n1−�(1)) (or equivalently, M ≤ O(n1−�(1))).
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1.1 Proof outline

For simplicity we discuss SAT algorithms instead of #SAT algorithms.

1.1.1 Satisfiability algorithm for k-PTFs

At a high level, we follow the same strategy as Sakai et al. [31]. Their algorithm uses
memoization, which is a standard and very useful strategy for satisfiability algorithms
(see, e.g. [29]). Let C be a circuit class and Cn be the subclass of circuits from C that
have n variables. Memoization algorithms for C-SAT fit into the following two-step
template.

• Step 1 Solve by brute-force all instances of C-SAT where the input circuitC ′ ∈ Cm
for some suitable m � n. (Typically, m = nε for some constant ε.) Usually this
takes exp(mO(1))� 2n time.

• Step 2On the input C ∈ Cn , set all input variables xm+1, . . . , xn to Boolean values
and for each such setting, obtain C ′′ ∈ Cm onm variables. Typically C ′′ is a circuit
for which we have solved satisfiability in Step 1 and hence by a simple table
lookup, we should be able to check if C ′′ is satisfiable in poly(|C |) time. Overall,
this takes time O∗(2n−m)� 2n .

At first sight, this seems perfect for k-PTFs, since it is a standard result that the
number of k-PTFs on m variables is at most 2O(mk+1) [5]. Thus, Step 1 can be done in
2O(mk+1) � 2n time.

For implementing Step 2, we need to ensure that the lookup (for satisfiability for
k-PTFs on m variables) can be done quickly. Unfortunately how to do this is unclear.
The following two ways suggest themselves.

• Store all polynomials P ′ ∈ Z[x1, . . . , xm] with small coefficients. Since every k-
PTF f can be sign-represented by an integer polynomial with coefficients of size
2poly(m) [22], this canbedonewith a table of size 2poly(m) and in time2poly(m).When
the coefficients are small (say of bit-complexity≤ no(1)), then this strategy already
yields a #SAT algorithm, as observed by Sakai et al. [31]. Unfortunately, in general,
given a restriction P ′′ ∈ Z[x1, . . . , xm] of a polynomial P ∈ Z[x1, . . . , xn], its
coefficients can be much larger (say 2poly(n)) and it is not clear how to efficiently
find a polynomial with small coefficients that sign-represents the same function.

• It is also known that every k-PTF on m variables can be uniquely identified by
poly(m) numbers of bit-complexity O(m) each [5]: these are called the “Chow
parameters” of f . Again for this representation, it is unclear how to compute
efficiently the Chow parameters of the function represented by the restricted
polynomial P ′′. (Even for an LTF, computing the Chow parameters is as hard
as Subset-sum [25].)

We show two different ways of circumventing these problems, using two different
ideas from the literature.

Using learning theory We use a beautiful recent result of Kane, Lovett and Moran
[19], who show that there is a simple decision tree that, when given as input the
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coefficients of any degree-k polynomial P ′ ∈ Z[x1, . . . , xm], can determine the sign
of the polynomial P ′ at all points in {−1, 1}m using only poly(m) queries to the
coefficients of P . Here, each query is a linear inequality on the coefficients of P; such
a decision tree is called a linear decision tree.10

Our strategy is to replace Step 1 with the construction of this linear decision tree
(which can be done in exp(mO(1)) time). At each leaf of the linear decision tree, we
replace the truth table of the input polynomial P ′ by a single bit that indicates whether
f ′ = sgn(P ′) is satisfiable or not.
In Step 2, we simply run this decision tree on our restricted polynomial P ′′ and

obtain the answer to the corresponding satisfiability query in poly(m, w(P ′′)) time.
Note, crucially, that the height of the linear decision tree implied by [19] construction
is poly(m) and independent of the bit-complexity of the coefficients of the polynomial
P ′′ (which may be as big as poly(n) in our algorithm). This concludes the description
of the algorithm for k-PTF.

Using circuit complexity A famous result of Goldmann, Håstad and Razborov [9]
shows that any linear threshold function (with possibly very large weights) can be
simulated by a depth-2 threshold circuit with small weights. A simple proof of this was
provided by Hofmeister [11]. The basic idea is to use the Chinese Remainder Theorem
to reduce checking integer equalities involving very large integers to checking integer
equalities with much smaller numbers (by going modulo small primes).

In our setting, this idea allowsus to reduce (via a randomizedprocedure) the problem
to be solved in Step 2 to solving satisfiability for k-PTFs11 on m variables with small
coefficients, as long as M is not too large. Since there are not many such PTFs, we
can compute and store the answers to all such queries beforehand. This yields the
algorithm.

1.1.2 Satisfiability algorithm for k-PTF circuits

For k-PTF circuits, we follow a template set up by the result of Kabanets and Lu [18]
on sparse-PTF circuits. We start by describing this template and then describe what is
new in our algorithm.

The Kabanets–Lu algorithm is an induction on the depth d of the circuit (which is
a fixed constant). Given as input a depth d k-PTF circuit C on n variables, Kabanets
and Lu do the following:

Depth-reduction: In [18], it is shown that on a random restriction that sets all but
n1−2β variables (here, think of β as a small constant, say 0.01) to random Boolean
values, the bottom layer of C simplifies in the following sense.

All but t ≤ nβ gates at the bottom layer become exponentially biased, i.e. on all
but δ = exp(−n�(1)) fraction of inputs they are equal to a fixed b ∈ {−1, 1}. Now, for
each such biased gate g, there is a minority value bg ∈ {−1, 1} that it takes on very

10 In the first draft of our work we used the linear decision tree designed by [20], which gave us a zero-
error randomized algorithm for #SAT(k-PTF). An anonymous referee of ITCS 2019 suggested that we can
replace it with the decision tree from [19] to derandomize our algorithm.
11 Strictly speaking, we reduce to solving satisfiability for a variant of PTFs called exact PTFs but this is
not important here.
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few inputs. [18] show how to enumerate this small number of inputs in δ · 2n time
and check if there is a satisfying assignment among these inputs. Having ascertained
that there is no such assignment, we replace these gates by their majority value and
there are only t gates at the bottom layer. At this point, we “guess” the output of these
t “unbiased” gates and for each such guess σ ∈ {−1, 1}t , we check if there is an
assignment that simultaneously satisfies:

(a) The depth d − 1 circuit C ′, obtained by setting the unbiased gates to the guess σ ,
is satisfied.

(b) Each unbiased gate gi evaluates to the corresponding value σi .

Base case: Continuing this way, we eventually get to a base casewhich is anANDof
sparse PTFs for which there is a satisfiability algorithm using the polynomial method.

In the above algorithm, there are two steps where subquadratic sparsity is crucially
used. The first is the minority assignment enumeration algorithm for PTFs, which uses
ideas of Chen and Santhanam [6] to reduce the problem to enumerating biased LTFs,
which is easy [7]. The second is the base case, which uses a non-trivial polynomial
approximation for LTFs [30]. Neither of these results hold for even degree-2 PTFs in
general. To overcome this, we do the following.

Enumerating minority assignments Given a k-PTF on m variables that is δ =
exp(−n�(1))-close to b ∈ {−1, 1}, we enumerate its minority assignments as fol-
lows. First, we set up a linear decision tree as in the k-PTF satisfiability algorithm.
Then we set all but q ≈ log 1

δ
variables of the PTF. Onmost such settings, the resulting

PTF becomes the constant function andwe can check this using the linear decision tree
we created earlier. In this setting, there is nothing to do. Otherwise, we brute-force over
the remaining variables to find the minority assignments. Setting parameters suitably,
this yields an O(

√
δ · 2m) time algorithm to find the minority assignments of a k-PTF

on m variables which is δ-close to an explicit constant.

Base case Here, we make the additional observation (which [18] do not need) that the
AND of PTFs that is obtained further is small in that it only has slightly superlinear
size. Hence, we can apply another random restriction in the style of [18] and using
the minority assignment enumeration ideas, reduce it to an AND of a small (say n0.1)
number of PTFs on n0.01 (say) variables. At this point, we can again run the linear
decision tree (in a slightly more generalized form) to check satisfiability.

2 #SAT for k-PTFs: the first algorithm

2.1 A result of Kane, Lovett, andMoran [19]

In this subsection, we formally present the result from [19] which we use in the
memoization step of our #SAT algorithm in the following subsection. We begin with
the following couple of definitions.

Definition 10 (Coefficient vectors) Fix any k,m ≥ 1. There are exactly r =∑k
i=0

(m
i

)

many multilinear monomials of degree at most k. Any multilinear polynomial
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P(x1, . . . , xm) of degree k can be identified with a list of the coefficients of its mono-
mials in lexicographic order (say) and hence with some vector w ∈ R

r . We call w the
coefficient vector of P and use coeffm,k(P) to denote this vector. Whenm, k are clear
from context, we will simply use coeff(P) instead of coeffm,k(P).

Definition 11 (Linear Decision Trees) A Linear Decision Tree for a function f :
R
r → S (for some set S) is a decision tree where each internal node is labelled by

a linear inequality, or query, of the form
∑r

i=1 wi zi ≥ θ (here z1, . . . , zn denote the
input variables). Depending on the answer to this linear query, computation proceeds
to the left or right child of this node, and this process continues until a leaf is reached,
which is labelled with an element of S that is the output of f on the given input.

The following construction of linear decision trees from [19] will be crucial for us.

Theorem 12 There is a deterministic algorithm, which on input a positive integer
r and a subset H ⊆ {−1, 1}r , produces a linear decision tree of depth 	 =
O(r log2 r · log |H |) that computes a function F : Rr → {−1, 1}|H | and has the
following properties.

1. Each linear query has coefficients in {−2,−1, 0, 1, 2}.
2. Given as input any w ∈ R

r such that 〈w, a〉 �= 0 for all a ∈ {−1, 1}r , F(w)

is the truth table of the LTF defined by w (with constant term 0) on inputs from
H ⊆ {−1, 1}r .

Moreover, the algorithm runs in time 2O(	).

Theorem 1.8 from [19] shows the existence of such a deterministic linear decision
tree. However, as noted by an anonymous ITCS 2019 reviewer,12 their proof can in
fact be slightly modified to yield an algorithm to construct it in the claimed running
time. For completeness, we give a proof in “Appendix A”.

We will need a version of Theorem 12 for evaluating (tuples of) k-PTFs. It follows
easily from Theorem 12.

Corollary 13 Fix positive constants k and c. Let r = ∑k
i=0

(m
i

) = 
(mk) denote the
number of coefficients in a degree-k multilinear polynomial in m variables. There is
a deterministic algorithm which on input positive integers m and � ≤ mc computes a
function F : Rr ·� → N as follows: given as input any �-tuple of coefficient vectors
w = (coeffm,k(P1), . . . , coeffm,k(P�)) ∈ R

r ·� such that Pi (a) �= 0 for all a ∈
{−1, 1}m, F(w) is the number of common satisfying assignments to all the k-PTFs on
{−1, 1}m sign-represented by P1, . . . , P�. Further, the algorithm runs in time 2O(	),
where 	 = O(� · mk+1 log2 m).

Proof For each b ∈ {−1, 1}m, define evalb ∈ {−1, 1}r to be the vector of all eval-
uations of multilinear monomials of degree at most k, taken in lexicographic order,
on the input b. Define H ⊆ {−1, 1}r to be the set {evalb | b ∈ {−1, 1}m}. Clearly,
|H | ≤ 2m . Further, note that given any polynomial P(x1, . . . , xm) of degree at most

12 A preliminary version of this paper only claimed a zero-error randomized algorithm for the construction
of such a linear decision tree, which is immediate from the work of [20].
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k, the truth table of the k-PTF sign-represented by P is given by the evaluation of the
LTF represented by coeff(P) at the points in H . Our aim, therefore, is to evaluate the
LTFs corresponding to coeff(P1), . . . , coeff(P�) at all the points in H .

For each i , we use the deterministic algorithm from Theorem 12 to produce a
decision tree Ti that evaluates the Boolean function fi : {−1, 1}m → {−1, 1} sign-
represented by Pi (or equivalently, evaluating the LTF corresponding to coeff(Pi ) at
all points in H ). Note that Ti has depth O(mk log2 m · log(2m)) = O(mk+1 log2 m).
The final tree T is obtained by simply running T1, . . . , T� in order, which is of depth
O(� ·mk+1 log2 m).Observe that the tree T outputs the number of common satisfying
assignments to all the fi .

The claim about the running time follows from the analogous claim in Theorem 12
and the fact that the number of common satisfying assignments to all the fi can be
computed from the truth tables in 2O(m) time. This completes the proof. ��

2.2 The #SAT algorithm

We are now ready to prove Theorem 4. We first state the algorithm, which follows a
standard memoization idea (see, e.g. [29]). We assume that the input is a polynomial
P ∈ Z[x1, . . . , xn] of degree at most k that sign-represents a Boolean function f on
n variables. The parameters of the instance are assumed to be (n, M) (recall from
Definition 2 that M = w(P) is the bit-complexity of the sum of the absolute values
of all the coefficients of P). Set m = n1/(k+1)/ log n.
Algorithm A

1. Use the algorithm from Corollary 13 with � = 1 to construct a deterministic
linear decision tree T such that on any input polynomial Q(x1, . . . , xm) (or more
precisely coeffm,k(Q)) of degree at most k that sign-represents a k-PTF g on m
variables, T computes the number of satisfying assignments to g.

2. Set N = 0 (N will ultimately be the number of satisfying assignments to f ).
3. For each setting σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn , do the following:

(a) Compute the polynomial Pσ obtained by substituting the variables xm+1,...,xn
accordingly in P .

(b) Run T on coeff(Pσ ) and compute its output Nσ , the number of satisfying
assignments to Pσ . Add this to the current value of N .

4. Output N .

Correctness It is clear fromCorollary 13 (invoked for � = 1) and step 3b that algorithm
A outputs the correct number of satisfying assignments to f .

Running time We show that the running time of algorithm A is poly(n, M) · 2n−m .
First note that by Corollary 13, the construction of a linear decision tree T takes 2O(�)

time, where � = mk+1 log2 m, and hence, step 1 takes 2O(�) time. Next, for a setting
σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn , computing Pσ and constructing the
vector coeff(Pσ ) takes only poly(n, M) time. Recall that the depth of T is O(�) and
thus, on input vector coeff(Pσ ), each of whose entries has bit complexity at most
M , it takes time O(�) · poly(M, n) to run T and obtain the output Nσ . Therefore,
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step 3 takes poly(n, M) · 2n−m time. Finally, the claim about the total running time of
algorithmA follows at oncewhenweobserve that for the settingm = (n/ log3 n)1/k+1,
� = O(n/ log n) = o(n).

3 #SAT for k-PTFs: the second algorithm

Here, we present an alternate approach to #SAT for k-PTFs. This approach uses mem-
oization as before, but the idea now will be to first reduce the size of the coefficients,
by going modulo small primes. A major hurdle with this is that PTFs use inequalities,
which do not gel well with this operation. Hence, we will first transform our PTFs into
a similar model which uses equalities, namely Exact Polynomial Threshold Functions.

Definition 14 (Exact Polynomial Threshold Functions [12,13]) A Boolean function
E : {−1, 1}n → {−1, 1} is called an Exact Polynomial Threshold Function of degree
k, or a k-EPTF, if there exists a multilinear polynomial P ∈ R[x1, . . . , xn] of degree
k such that for all a ∈ {−1, 1}n , E(a) = −1 if and only if P(a) = 0. We refer to such
a P as a representation of E . When k = 1, we call E an Exact Threshold Function, or
ETF for short.

The main idea in this algorithm is to first convert the given PTF to a disjoint OR of
EPTFs. To do this, we follow Hofmeister [11], who showed how to do this for degree
one. His proof is constructive and can easily be adapted to higher degrees.

Lemma 15 (Implicit in [11]) Let f : {−1, 1}n → {−1, 1} be a k-PTF sign-
represented by a polynomial P ∈ Z[x1, . . . , xn] with parameters (n, M). Then it
can be written as,

f =
h∨

i=1
Ei

where h = O(Mn2k) and each Ei is a k-EPTF that can be represented by a degree k
polynomial with weight O(M + k log n).

Moreover, the OR is a disjoint OR i.e. at most one of the Ei s can evaluate to TRUE
for a given input.

Finally, this transformation is constructive in the following sense. There is a deter-
ministic algorithm running in poly(n, M) time that, on input an integer polynomial
P ∈ Z[x1, . . . , xn] with parameters (n, M) representing f , produces polynomials
P1, . . . , Ph of weight O(M + k log n) where Pi represents Ei for each i ∈ [h].

We include a proof of this lemma in “Appendix B” for completeness.
One of the bottlenecks to a brute force approach to satisfiability directly using this

lemma is the size of the coefficients. For this reason, instead of evaluating an EPTF
as is, we evaluate it modulo many small primes. We first define this modular version
of EPTFs.
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Definition 16 (modular EPTFs) Let P ∈ Z[x1, . . . , xn] be any integer polynomial of
degree at most k. For a prime p, we define the Boolean function E p

P : {−1, 1}n →{−1, 1} such that for all a, E p
P (a) = −1 if and only if P(a) ≡ 0 mod p.

We call such a Boolean function E p
P a p-modular k-EPTF.

Evaluating a polynomial modulo small enough primes will reduce the size of the
coefficients but it will also introduce errors. However, if we evaluate modulo a random
prime among sufficiently many primes, the error probability can be shown to be small.
The underlying principle is the well-known Chinese Remainder Theorem, which we
state below.

Theorem 17 (Chinese Remainder Theorem) Let {p1, . . . , p�} be a set of distinct
primes, and a ∈ Z. Then the following are equivalent:

• for all 1 ≤ i ≤ �, a ≡ 0 mod pi .
• a ≡ 0 mod

∏�
i=1 pi .

In particular if a �= 0 and a ≡ 0 (mod pi ) for each i ∈ [�], then � ≤ log2 |a|.
Now we are ready to describe the algorithm in detail. The input, as earlier, will be

a polynomial P ∈ Z[x1, . . . , xn] of degree at most k that sign-represents a Boolean
function f on n variables. The parameters of the instance are taken to be (n, M). We
assume that all monomials of the same degree are ordered among themselves using a
predetermined ordering. One such ordering is the lexicographic ordering.

Algorithm MODp :
Set m = δn1/k and A = β2m for a small enough constant δ and a large enough

constant β.

1. Using Lemma 15, decompose f as a disjoint OR of k-EPTFs

f (X) =
h∨

i=1
Ei (X).

Here h = O(Mn2k) = poly(n, M) and each Ei is a k-EPTF represented by a
degree-k polynomial Pi with weight at most M ′ = O(M + log n).

2. We now describe the memoization step. For each prime p ∈ [1, M ′A log(M ′A)],
we do the following. For each i ∈ [h], consider all degree-k integer polynomials
in x1, . . . , xm such that the following holds.

• The coefficients of the monomials with degree exactly k are chosen by reducing
the corresponding coefficients of the polynomial Pi modulo p (to obtain a non-
negative integer less than p).

• The coefficients of the monomials of degree less than k are allowed to be any
non-negative integers less than p. Let Pi,p be the set of all such polynomials.

Each polynomial Q ∈ Pi,p defines a p-modular k-EPTF E p
Q of m variables. For each

such Q, use brute force over all m input variables and count the number of satisfying
assignments of E p

Q . Store the results in a table.
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3. Set N = 0. (N will ultimately be the number of satisfying assignments to f ).
4. For each σ : {xm+1, . . . , xn} → {−1, 1}, for each i ∈ [h], do the following. For

each j ∈ [2n], do the following.

(a) Choose a uniformly random prime p j ∈ [1, M ′A log(M ′A)].
(b) Compute Pi,σ , the restriction of Pi given by the partial assignment σ . (Note

that Pi,σ is a polynomial in x1, . . . , xm . Further, since Pi has degree at most
k, the coefficient of any monomial of degree exactly k in Pi,σ is the same as it
is in Pi .)

(C) Let Q be the polynomial in Pi,p obtained by reducing the coefficients of Pi
modulo p j . Look up the number of satisfying assignments of E

pj
Q in the table

constructed in Step 2. Let this be Ni,σ, j .

Arrange Ni,σ,1, . . . , Ni,σ,2n in increasing order and let Ni,σ be the smallest value.
Add Ni,σ to N .

5. Output N .

We now prove Theorem 6 from the introduction. Note that Theorem 6 is trivial
when M = 2�(n1/k) since #SAT for k-PTFs can be solved in time poly(n, M)2n by
a trivial brute-force algorithm. Hence, from now on, we assume that M ≤ 2εn1/k for
a suitably small constant ε. The following statement now almost implies Theorem 6,
except for the zero-error criterion.

Theorem 18 The following holds for large enough constant β and small enough con-
stants ε, δ. MODp is a randomized algorithm, which on input a polynomial P of
degree k with parameters (n, M) with M ≤ 2εn1/k , outputs the number of satisfying
assignments for f = sgn(P) with probability 1− o(1). The algorithm runs in time at
most 2n−�(n1/k).

Proof Correctness Recall that f is decomposed as a disjoint OR of k-EPTFs
E1, . . . , Eh represented by polynomials P1, . . . , Ph in Step 1. For any assignment
σ considered in Step 4, we still have that the corresponding relation between the
restrictions fσ and E1,σ , . . . , Eh,σ . It suffices to show that in Step 4, for each i and
σ , Ni,σ equals the number of satisfying assignments of Ei,σ with high probability.

To this end, we claim that for any restriction σ on the last n −m variables and any
i ∈ [h] the following holds.

Pr[Ni,σ = number of satisfying assignments of Ei,σ ] ≥ 1− 1

4n
(1)

To show this we proceed as follows. Note that for each j ∈ [2n], Ni,σ, j is equal
to the number of a ∈ {−1, 1}m such that Pi,σ (a) ≡ 0 (mod p j ). We call p j a bad
prime for a if Pi,σ (a) is non-zero but Pi,σ (a) ≡ 0 (mod p j ), i.e a is not a satisfying
assignment of Ei,σ , but under the modulo operation, it gets counted as a satisfying
assignment. Further,we say that p j is a bad prime if it is bad for somea ∈ {−1, 1}m , i.e.
modulo p j some non-satisfying assignment gets counted as a satisfying assignment.
Note that Ni,σ, j is always at least the number of satisfying assignments of Ei,σ , with
equality occurring if p j is not a bad prime.
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We now bound the probability that p j is a bad prime. Fix any a ∈ {−1, 1}m .
As Pi has weight at most M ′, we have |Pi,σ (a)| ≤ 2M

′
. Using Theorem 17, the

number of primes that are bad for a is bounded by M ′. Hence the total number of bad
primes is at most M ′2m . On the other hand, the total number of primes in the range
[1, M ′A log(M ′A)] is at least �(M ′A) by the Prime Number theorem. For a large
enough constant β, this is at least 4M ′2m . Thus, the probability that p j is a bad prime
is at most 1/4.

Since Ni,σ is the smallest of all the Ni,σ, j for j ∈ [2n], we see that Ni,σ is equal
to the number of satisfying assignments of Ei,σ unless every p j ( j ∈ [2n]) is a bad
prime. The probability of this is at most (1/4)n . This proves (1).

By a union bound, the probability that there exist σ and i such that Ni,σ is not
equal to the number of satisfying assignments of Ei,σ is at most h2n−m/4n =
O(Mn2k2n−m/4n) = o(1), where we have used the upper bound on M from the
statement of the theorem. Hence with probability 1 − o(1), the algorithm correctly
computes the number of satisfying assignments of Ei,σ for each σ, i . In this case the
algorithm correctly returns the number of satisfying assignments of f .

Running time The running time of the algorithm is dominated by the running times of
Step 2 and Step 4.

In Step 2, the number of primes in the specified range is O(M ′2m). For a given
prime p and i ∈ [h], the set Pi,p has size at most (c1M ′2m)m

k−1
for some positive

constant c1. Hence the number of modular k-EPTFs that are considered is at most
O(hM ′2m) · (c1M ′2m)m

k−1 = 2O(mk+mk−1 logM ′). For each such EPTF, it takes time
2m ·poly(n, M ′) = 2m ·poly(n, M) to brute force over all possible assignments. Hence
the total time needed to execute this step is 2O(mk+mk−1 logM ′) · poly(n, M) ≤ 2n/2 for
our choice of parameters and suitably small ε, δ.

For Step 4, the total running time is 2n−m poly(n, M). Hence, for the given choice
of parameters, and using M ≤ 2εn1/k for suitably small ε, the final running time is
2n−�(n1/k). ��
Making the algorithm zero-error The above almost implies Theorem 6 with the only
exception being that the algorithm is not zero-error. However, there is a simple and
elegant fix for this, as was pointed out to us by a anonymous reviewer.

Note that the above algorithm always returns an estimate that is at least the number
of satisfying assignments of f , as the only source of error is when an non-satisfying
assignment is incorrectly counted as a satisfying assignment at the time of computing
Ni,σ for some i ∈ [h], σ ∈ {−1, 1}n−m .

So, to get the zero-error algorithm, we proceed as follows. We run the above
algorithm on polynomials P and −P , which represent Boolean functions f and
the negation of f respectively. The algorithm returns estimates N1 and N2, where
N1 ≥ N f and N2 ≥ N¬ f and Ng denotes the number of satisfying assignments of g.
Note that both inequalities are equalities precisely when N1+ N2 = 2n , and this hap-
pens with probability 1−o(1). Hence, the algorithm simply checks that N1+N2 = 2n

and returns N1 in this case. Otherwise, the algorithm returns ?.
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4 Constant-depth circuits with PTF gates

In this section we give an algorithm for counting the number of satisfying assignments
for a k-PTF circuit of constant depth and slightly superlinear size.We begin with some
definitions.

Definition 19 Let δ ≤ 1 be any parameter. Two Boolean functions f , g are said to be
δ-close if Prx [ f (x) �= g(x)] ≤ δ.

A k-PTF f specified by a polynomial P is said to be δ-close to an explicit constant
if it is δ-close to a constant and such a constant can be computed efficiently, i.e.
poly(n, M), where n is the number of variables in P and w(P) is at most M .

Definition 20 For a Boolean function f : {−1, 1}n → {−1, 1}, the majority value of
f is the bit value b ∈ {−1, 1} which maximizes Prx [ f (x) = b] and the bit value −b
is said to be its minority value.

For a Boolean function f with majority value b, an assignment x ∈ {−1, 1}n is
said to be a majority assignment if f (x) = b and a minority assignment otherwise.

Definition 21 Given a k-PTF f onn variables specifiedby apolynomial P , a parameter
m ≤ n and a partial assignment σ ∈ {−1, 1}n−m on n − m variables, let Pσ be
the polynomial obtained by substituting the variables in P according to σ . If P has
parameters (n, M) then Pσ has parameters (m, M). For a k-PTFcircuitC ,Cσ is defined
similarly. If C has parameters (n, s, d, M) then Cσ has parameters (m, s, d, M).

Outline of the #SAT procedure For designing a #SAT algorithm for k-PTF circuits,
we use the generic framework developed by Kabanets and Lu [18] with some crucial
modifications.

Given a k-PTF circuit C on n variables of depth d we want to count the number of
satisfying assignments a ∈ {−1, 1}n such that C(a) = −1. We in fact solve a slightly
more general problem. Given (C,P), where C is a small k-PTF circuit of depth d
and P is a set of k-PTF functions, such that

∑
f ∈P fan-in( f ) is small, we count the

number of assignments that simultaneously satisfy C and all the function in P .
At the core of the algorithm that solves this problem, Algorithm B, is a recursive

procedureA5, which works as follows: on inputs (C,P) it first applies a simplification
step that outputs� 2n instances of the form (C ′,P ′) such that
• Both C ′ and functions in P ′ are on m � n variables.
• The sets of satisfying assignments of these instances “almost” partition the set of
satisfying assignments of (C,P).

• With all but very small probability the bottom layer of C ′ has the following nice
structure.

– At most n gates are δ-close to an explicit constant. We denote this set of gates by
B (as we will simplify them by setting them to the constant they are close to).

– At most nβd gates are not δ-close to an explicit constant. We denote these gates by
G (as we will simplify them by “guessing” their values).

• There is a small set of satisfying assignments that are not covered by the satisfying
assignments of (C ′,P ′) but we can count these assignments with a brute-force
algorithm that does not take too much time.
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For each C ′ with this nice structure, then we try to use this structure to create C ′′
which has depth d − 1. Suppose we reduce the depth as follows:

– Set all the gates in B to the values that they are biased towards.
– Try all the settings of the values that the gates in G can take, thereby from C ′
creating possibly 2n

βd instances (C ′′,P ′).
(C ′′,P ′) now is an instance where C ′′ has depth d − 1. Unfortunately, by simply
setting biased gates to the values they are biased towards, we may miss out on the
minority assignments to these gates which could eventually satisfy C ′. We design a
subroutineA3 to precisely handle this issue, i.e. to keep track of the number ofminority
assignments, say NC ′ . This part of our algorithm is completely different from that of
[18], which only works for subquadratically sparse PTFs.

Once A3 has computed NC ′ , i.e. the number of satisfying assignments among the
minority assignments,we nowneed to only count the number of satisfying assignments
among the rest of the assignments.

To achieve this we use an idea similar to that in [7,18], which involves appending
P ′ with a few more k-PTFs (this forces the biased gates to their majority values). This
gives say a set P̃ ′. Similarly, while setting gates in G to their guessed values, we again
use the same idea to ensure that we are counting satisfying assignments consistent with
the guessed values, once again updating P̃ ′ to a new set P ′′. This creates instances of
the form (C ′′,P ′′), where the depth of C ′′ is d − 1.

This way, we iteratively decrease the depth of the circuit by 1. Finally, we have
instances (C ′′,P ′′) such that the depth of C ′′ is 1, i.e. it is a single k-PTF, say h. At
this stagewe solve #SAT(C̃), where C̃ = h∧∧

f ∈P ′′ f . This is handled in a subroutine
A4. Here too our algorithm differs significantly from [18].

In what follows we will prove Theorem 9. In order to do so, we will set up various
subroutines A1,A2,A3,A4,A5 designed to accomplish certain tasks and combine
them together at the end to finally design algorithm B for the #SAT problem for k-PTF
circuits.

A1 will be an oracle, used in other routines, which will compute the number of
common satisfying assignments for small AND of PTFs on few variables (using the
same idea as in the algorithm for #SAT for k-PTFs). A2 will be a simplification step,
which will allow us to argue about some structure in the circuit (this algorithm is from
[18]). It will make many gates at the bottom of the circuit δ-close to a constant, thus
simplifying it. A3 will be used to count minority satisfying assignments for a bunch
of PTFs that are δ-close to an explicit constant, i.e. assignments which cause at least
one of the PTFs to evaluate to its minority value.A4 will be a general base case of our
algorithm, which will count satisfying assignments for AND of superlinearly many
PTFs, by first using A2 to simplify the circuit, then reducing it to the case of small
AND of PTFs and then using A1. A5 will be a recursive procedure, which will use
A2 to first simplify the circuit, and then convert it into a circuit of lower depth, finally
making a recursive call on the simplified circuit.

Parameter setting Let d be a constant. Let A, B be two fixed absolute large constants.
Let ζ = min(1, A/2Bk2). For each 2 ≤ i ≤ d, let βi = A · εi and εi = (

ζ
10A(k+1) )

i .
Choose β1 = 1/10 and ε1 = 1/10A.
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Oracle access to a subroutine Let A1(n′, s, f1, . . . , fs) denote a subroutine with the
following specification. Here, n is the number of variables in the original input circuit.

Input:ANDof k-PTFs, say f1, . . . , fs specifiedbypolynomials P1, . . . , Ps respec-
tively, such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1))
variables and w(Pi ) ≤ M .

Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], Pi (a) = −1}.
In what follows, we will assume that we have access to the above subroutine A1.

We will set up such an oracle and show that it answers any call to it in time poly(n, M)

in Sect. 4.5.

4.1 Simplification of a k-PTF circuit

For any 1 > ε � (log n)−1, let β = Aε and δ = exp(−nβ/B·k2), where A and B
are constants. Note that it is these constants A, B we use in the parameter settings
paragraph above. Let A2(C, d, n, M) be the following subroutine.

Input: k-PTF circuit C of depth d on n variables with size n1+ε and weight M .
Output: A decision tree TDT which is a complete binary tree of depth n − n1−2β

such that for a uniformly random leaf σ ∈ {−1, 1}n−n1−2β , the corresponding circuit
Cσ is a good circuit with probability 1 − exp(−nε), where Cσ is called good if its
bottom layer has the following structure:

– there are at most n gates which are δ-close to an explicit constant. Let Bσ denote
this set of gates.

– there are at most nβ gates that are not δ-close to an explicit constant. Let us denote
this set of gates by Gσ .

In [18], such a subroutine A2(C, d, n, M) was designed. Specifically, they proved
the following theorem.

Theorem 22 (Kabanets and Lu [18]) There is a zero-error randomized algorithm
A2(C, d, n, M) that runs in time poly(n, M) · O(2n−n1−2β ) and outputs a decision
tree as described above with probability at least 1 − 1/210n (and outputs ? other-
wise). Moreover, given a good Cσ , there is a deterministic algorithm that runs in time
poly(n, M) which computes Bσ and Gσ .

Remark 23 In [18], it is easy to see that the probability of outputting ? is at most 1/2.
To bring down this probability to 1/210n , we run their procedure in parallel 10n times,
and output the first tree that is output by the algorithm. The probability that no such
tree is output is 1/210n .

Remark 24 In designing the above subroutine in [18], they consider a more general
class of polynomially sparse-PTF circuits (i.e. each gate computes a PTF with poly-
nomially many monomials) as opposed to the k-PTF circuits we consider here. Under
this weaker assumption, they get that δ = exp(−n�(β3)). However, by redoing their
analysis for degree k-PTFs, it is easy to see that δ could be set to exp(−nβ/B·k2) for
some constant B. Under this setting of δ, we get exactly the same guarantees.
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Further, while the statement of the result in [18] does not guarantee that the decision
tree TDT obtained is a complete binary tree, it is easy to see that this follows from their
analysis (and the analysis from [7] that is used as a black box).

In this sense, the above theorem statement is a slight restatement of [18, Lemma
11].

4.2 Enumerating theminority assignments

We now design an algorithm A3(m, �, δ, g1, . . . , g�), which has the following
behaviour.

Input: parameters m ≤ n, �, δ such that δ ∈ [
exp(−m1/10(k+1)), 1

]
, � ≤ m2, k-

PTFs g1, g2, . . . , g� specified by polynomials P1, . . . , P� onm variables (x1, . . . , xm)
each of weight at most M and which are δ-close to −1.

Oracle access to: A1.
Output: The set of all a ∈ {−1, 1}m such that ∃i ∈ [�] for which Pi (a) > 0.

Lemma 25 There is a deterministic algorithm A3(m, �, δ, g1, . . . , g�) as specified
above that runs in time poly(m, M) · √δ · 2m.
Proof We start with the description of the algorithm.

A3(m, ‘, , g1, . . . , g‘)

1. Set q = 1
2 log

1
δ
≤ m

2 and let N = ∅. (N will eventually be the collection of
minority assignments i.e. all a ∈ {−1, 1}m such that ∃i ∈ [�] forwhich Pi (a) > 0.)

2. For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm , do the following:

(a) Construct the restricted polynomials P1,ρ, . . . , P�,ρ . Let gi,ρ = sgn(Pi,ρ) for
i ∈ [�].

(b) Using oracle A1(q, 1,−gi,ρ), check for each i ∈ [�] if gi,ρ is the constant
function−1 by checking if the output of the oracle on the input−gi,ρ is zero.

(c) If there is an i ∈ [�] such that gi,ρ is not the constant function −1, try all
possible assignments χ to the remaining q variables x1, . . . , xq . This way,
enumerate all assignments b = (χ, ρ) to x1, . . . , xm for which there is an
i ∈ [�] such that Pi (b) > 0. Add such an assignment to the collection N .

3. Output N .

Correctness Ifa ∈ {−1, 1}m is aminority assignment (i.e. ∃i0 ∈ [�] so that Pi0(a) > 0)
and if a = (χ, ρ) where ρ is an assignment to the last m − q variables, and χ to the
first q, a will get added to N in the loop of step 2 corresponding to ρ and that of χ

in step 2c, because of i0 being a witness. Conversely, observe that we only add to the
collection N when we encounter a minority assignment.

Running time For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm , step
2a takes poly(m, M) time and step 2b takes O(�). poly(m, M) = poly(m, M) time
and so combined, they take only poly(m, M) time. Let T be the set consisting of
all assignments ρ to the last m − q variables such that the algorithm enters the loop
described in step 2c i.e.

T = {ρ ∈ {−1, 1}m−q |∃i ∈ [�] : gi,ρ is not the constant function− 1}
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and let T c denote its complement. Also note that for a ρ ∈ T , enumeration of minority
assignments in step 2c takes 2q · � · poly(m, M) time. Therefore, we can bound the
total running time by

poly(m, M)(2q · |T | + |T c|).

Next, we claim that the size of T is small:

Lemma 26 |T | ≤ � · √δ · 2m−q .
Proof Wedefine for i ∈ [�],Ti = {ρ ∈ {−1, 1}m−q |gi,ρ is not the constant function−
1}. By the union bound, it is sufficient to show that |Ti | ≤

√
δ ·2m−q for a fixed i ∈ [�].

Let Dm denote the uniform distribution on {−1, 1}m i.e. on all possible assignments
to the variables x1, . . . , xm . Then from the definition of δ-closeness, we know

Pr
a∼Dm

[gi (a) = 1] ≤ δ.

Writing LHS in the following way, we have

E
ρ∼Dm−q

[

Pr
χ∼Dq

[gi,ρ(χ) = 1]
]

≤ δ

where Dm−q and Dq denote uniform distributions on assignments to the last m − q
variables and the first q variables respectively. By Markov’s inequality,

Pr
ρ∼Dm−q

[ Pr
χ∼Dq

[gi,ρ(χ) = 1] ≥ √δ] ≤ √δ.

Consider a ρ for which this event does not occur i.e. for which Prχ∼Dq [gi,ρ(χ) =
1] < √δ. For such a ρ, gi,ρ has only 2q = 1/

√
δ many inputs and therefore, gi,ρ must

be the constant function −1. Thus, we conclude that

Pr
ρ∼Dm−q

[gi,ρ is not the constant function− 1] ≤ √δ

or in other words, |Ti | ≤
√

δ · 2m−q . ��
Finally, by using the trivial bound |T c| ≤ 2m−q and the above claim, we obtain a

total running time of poly(m, M) ·√δ · 2m and this concludes the proof of the lemma.
��

4.3 #SAT for AND of k-PTFs

We design an algorithm A4(n, M, g1, . . . , gτ ) with the following functionality.
Input: A set of k-PTFs g1, . . . , gτ specified by polynomials P1, . . . , Pτ on n vari-

ables such that w(pi ) ≤ M for each i ∈ [τ ] and ∑
i∈[τ ] fan-in(gi ) ≤ n1+ε1 .

Oracle access to: A1,A2.
Output: #{a ∈ {−1, 1}n | ∀i ∈ [τ ], Pi (a) < 0}.
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4.3.1 The details of the algorithm

A4(n,M, g1, . . . , gø)

1. Let m = nα for α = ζε1
2(k+1) . Let C denote the AND of g1, . . . , gτ .

2. Run A2(C, 2, n, M) to obtain the decision tree TDT. Initialize N to 0.
3. For each leaf σ of TDT, do the following:

(A) IfCσ is not good, count the number of satisfying assignments for Cσ by brute-
force and add to N .

(B) If Cσ is good, do the following:
(i) Cσ is now an AND of PTFs in Bσ and Gσ , over n′ = n1−2β1 vari-

ables, where all PTFs in Bσ are δ-close to an explicit constant, where
δ = exp(−nβ1/B·k2). Moreover, |Bσ | ≤ n, |Gσ | ≤ nβ1 . Let Bσ =
{h1, . . . , h�} be specified by Q1, . . . , Q�. Suppose for i ∈ [�], hi is
close to ai ∈ {−1, 1}. Then let Q′i = −ai · Qi and h′i = sgn(Q′i ).
Let B ′σ = {Q′1, . . . , Q′�}.

(ii) For each restriction ρ : {xm+1, . . . , xn′ } → {−1, 1}, do the following:
(a) Check if there exists h′ ∈ B ′σ such that h′ρ is not the constant function

−1 using A1(m, 1, h′ρ).
(b) If such an h′ ∈ B ′σ exists, then count the number of satisfying assign-

ments for Cσρ by brute-force and add to N .
(c) If the above does not hold, we have established that for each hi ∈ Bσ ,

hi,ρ is the constant function ai . If ∃i ∈ [�] such that ai = 1, it means
Cσρ is also a constant 1 . Then simply halt. Else set each hi to ai . Thus,
Cσρ has been reduced to an AND of nβ1 many PTFs overm variables.
Call this set G ′σρ , use A1(m, nβ1 ,G ′σρ) to calculate the number of
satisfying assignments and add the output to N .

4. Finally, output N .

4.3.2 The correctness argument and running time analysis

Lemma 27 A4 is a zero-error randomized algorithm that counts the number of sat-
isfying assignments correctly. Further, A4 runs in time poly(n, M) · O(2n−nα

) and
outputs the right answer with probability at least 1/2 (and outputs ? otherwise).

Proof Correctness For a leaf σ of TDT, when Cσ is not good, we simply use brute-
force, which is guaranteed to be correct. Otherwise,

• If h′ρ not the constant function−1 for some h′ ∈ B ′σ , thenwe again use brute-force,
which is guaranteed to work correctly.

• Otherwise, for each h′ ∈ B ′σ , h′ρ is the constant function −1. Here we only need
to consider the satisfying assignments for the gates in Gσρ . For this we use A1,
that works correctly by assumption.

Further, we need to ensure that the parameters that we callA1 on, are valid. To see
this, observe that m = nα ≤ n1/(2(k+1)) because of the setting of α and further, we
have nβ1 ≤ n0.1.
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Finally, the claim about the error probability follows from the error probability of
A2 (Theorem 22).

Running Time The time taken for constructing TDT is poly(n, M) · O(2n−n1−2β1 ), by
Theorem 22. For a leaf σ of TDT, we know that step (A) is executed with probability
at most 2−nε1 . The total time for running step (A) is thus poly(n, M) · O(2n−nε1

). We
know that the oracle A1 answers calls in poly(n, M) time. Hence, the total time for
running step (a) is poly(n, M)·O(2n−nα

). Next, note that if step (b) is executed, then all
PTFs in Bσ are δ-close to−1. So, the number of times it runs is atmost δ·2n′ . Therefore,
the total time for running step (b) is poly(n, M) · O(2n+nα−nβ1/Bk2

). Recall that ζ =
min(1, A/2Bk2), implying α = ζε1

2(k+1) = ζβ1
2A(k+1) ≤ β1

4Bk2(k+1) <
β1
Bk2

. Similar to the

analysis of step (a), the total time for running step (c) is also poly(n, M) · O(2n−nα
).

We conclude that the total running time is poly(n, M) · O(2n−nα
). This completes the

proof.

4.4 #SAT for larger depth k-PTF circuits

Let C be a k-PTF circuit of depth d ≥ 1 on n variables and let P be a set of k-PTFs
g1, . . . , gτ , which are specified by n-variate polynomials P1, . . . , Pτ . Let #SAT(C,P)

denote #{a ∈ {−1, 1}n | C(a) < 0 and ∀i ∈ [τ ], Pi (a) < 0}. We now specify our
depth-reduction algorithm A5(n, d, M, n1+εd ,C,P).

Input: (C,P) as follows:

• k-PTF circuit C with parameters (n, n1+εd , d, M).
• a set P of k-PTFs g1, . . . , gτ on n variables, which are specified by polynomials

P1, . . . , Pτ such that
∑τ

i=1 fan-in(gi ) ≤ n1+εd and for each i ∈ [τ ], w(Pi ) ≤ M .

Oracle access to: A1,A4.
Output: #SAT(C,P).
We start by describing the algorithm.

4.4.1 The details of the algorithm

Let count be a global counter initialized to 0 before the execution of the algorithm.
A5(n,d,M,n1+"d ,C,P)

1. If d = 1, output A4(n, M, {C} ∪ P) and halt.
2. Run A2(C, d, n, M), which gives us a TDT. (If not, output ?.)
3. For each leaf σ ∈ {−1, 1}n−n1−2βd of TDT.

(a) For each i ∈ [τ ] compute Pi,σ , the polynomial obtained by substituting σ in
its variables. Let Pσ = {P1,σ , . . . , Pτ,σ }.

(b) Obtain Cσ . If Cσ is not a good circuit, then brute-force to find the number of
satisfying assignments of (Cσ ,Pσ ), say Nσ , and set count = count+ Nσ .

(c) If Cσ is good then obtain Bσ and Gσ .
(d) Let Bσ = {h1, . . . , h�} be specified by Q1, . . . , Q�.We know that each h ∈ Bσ

is δ-close to an explicit constant, for δ = 2−nβd /Bk2

. Suppose for i ∈ [�], hi
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is close to ai ∈ {−1, 1}. Then let Q′i = −ai · Qi and h′i = sgn(Q′i ). Let
B ′σ = {Q′1, . . . , Q′�}.

(e) Run A3(n1−2βd , �, δ, h′1, . . . , h′�) to obtain the set Nσ of all the minority
assignments of Bσ . (Note that this uses oracle access to A1.)
for each a ∈ Nσ , if ((C(a) < 0) AND (∀i ∈ [τ ], Pi,σ (a) < 0)), then
count = count+ 1.

(f) LetGσ = { f1, . . . , ft } be specified by polynomials R1, . . . , Rt . We know that
t ≤ nβd . For each b ∈ {−1, 1}t ,

i Let R′i = −bi · Ri for i ∈ [t]. Let G ′σ,b = {R′1, . . . , R′t }.
ii Let Cσ,b be the circuit obtained from Cσ by replacing each hi by ai

1 ≤ i ≤ � and each f j by b j for 1 ≤ j ≤ t .
iii Pσ,b = Pσ ∪ B ′σ ∪ G ′σ,b.

iv If d > 2 then run A5(n1−2βd , d − 1, M, n1+εd ,Cσ,b,Pσ,b) n1 = 10n
times and let Nσ be the output of the first run that does not output ?. Set
count = count+ Nσ . (If all runs of A5 output ?, then output ?.)

v If d = 2 then run A4(n1−2βd , M,Cσ,b ∪ Pσ,b) n1 = 10n times and let
Nσ be the output of the first run that does not output ?. Set count =
count+ Nσ . (If all runs of A5 output ?, then output ?.)

4. Output count.

4.4.2 The correctness argument and running time analysis

Lemma 28 The algorithm A5 described above is a zero-error randomized algorithm
which on input (C,P) as described above, correctly solves #SAT(C,P). Moreover, the
algorithm outputs the correct answer (and not ?) with probability at least 1/2. Finally,
A5(n, d, M, n1+εd ,C,∅) runs in time poly(n, M) · 2n−nζεd /2(k+1)

, where parameters
εd , ζ are as defined at the beginning of Sect. 4.

Proof We argue correctness by induction on the depth d of the circuit C .
Clearly, if d = 1, correctness follows from the correctness of algorithm A4. This

takes care of the base case.
If d ≥ 2, we argue first that if the algorithm does not output ?, then it does output

#SAT(C,P) correctly. Assume that the algorithm A2 outputs a decision tree TDT as
required (otherwise, the algorithm outputs ? and we are done). Now, it is sufficient to
argue that for each σ, the number of satisfying assignments to (Cσ ,Pσ ) is computed
correctly (if the algorithm does not output ?).

Fix any σ. IfCσ is not a good circuit, then the algorithm uses brute-force to compute
#SAT(Cσ ,Pσ ) which yields the right answer. So we may assume that Cσ is indeed
good.

Now, the satisfying assignments to (Cσ ,Pσ ) break into two kinds: those that are
minority assignments to the set Bσ and those that are majority assignments to Bσ . The
former set is enumerated in Step 3e (correctly by our analysis of A3) and hence we
count all these assignments in this step.

Finally, we claim that the satisfying assignments to (Cσ ,Pσ ) that are majority
assignments of all gates in Bσ are counted in Step 3f. To see this, note that each such
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assignment a ∈ {−1, 1}n1−2βd forces the gates in Gσ to some values b1, . . . , bt ∈
{−1, 1}. Note that for each such b ∈ {−1, 1}t , these assignments are exactly the
satisfying assignments of the pair (Cσ,b,Pσ,b) as defined in the algorithm. In particular,
the number satisfying assignments to (Cσ ,Pσ ) that are majority assignments of all
gates in Bσ can be written as

∑

b∈{−1,1}t
# SAT(Cσ,b,Pσ,b).

We now want to apply the induction hypothesis to argue that all the terms in the sum
are computed correctly. To do this, we need to argue that the size of Cσ,b and the
total fan-in of the gates in Pσ,b are bounded as required (note that the total size of C
remains the same, while the total fan-in of P increases by the total fan-in of the gates
in B ′σ ∪ G ′σ,b which is at most n1+εd ). It can be checked that this boils down to the
following two inequalities

n(1−2βd )(1+εd−1) ≥ n1+εd and n(1−2βd )(1+εd−1) ≤ 2n1+εd

both of which are easily verified for our choice of parameters (for large enough n).
Thus, by the induction hypothesis, all the terms in the sum are computed correctly
(unless we get ?). Hence, the output of the algorithm is correct by induction.

Now, we analyze the probability of error. If d = 1, the probability of error is at
most 1/2 by the analysis ofA4. If d > 2, we get an error if eitherA2 outputs ? or there
is some σ such that the corresponding runs of A5 or A4 output ?. The probability of
each is at most 1/210n . Taking a union bound over at most 2n many σ, we see that the
probability of error is at most 1/2�(n) ≤ 1/2.

Finally, we analyze the running time. Define T (n, d, M) to be the running time of
the algorithm on a pair (C,P) as specified in the input description above. We need
the following claim.

Lemma 29 T (n, d, M) ≤ poly(n, M) · 2n−nζεd /2(k+1)
.

To see the above, we argue by induction. The case d = 1 follows from the run-
ning time of A4. Further from the description of the algorithm, we get the following
inequality for d ≥ 2.

T (n, d, M) ≤ poly(n, M)·(2n−n1−2βd+2n−nεd+2n− 1
2 ·nβd /(Bk2)+2n−n(1−2βd )ζ εd−1/2(k+1)

)

(2)
The first term above accounts for the running time of A2 and all steps other than
Steps 3b, 3e and 3f. The second term accounts for the brute force search in Step 3b
since there are only a 2−nεd fraction of σ where it is performed. The third term
accounts for the minority enumeration algorithm in Step 3e (running time follows
from the running time of that algorithm). The last term is the running time of Step 3f
and follows from the induction hypothesis.

It suffices to argue that each term in the RHS of (2) can be bounded by 2n−nζεd /2(k+1)
.

This is an easy verification from our choice of parameters and left to the reader. This
concludes the proof. ��
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4.5 Putting it together

In this subsection, we complete the proof of Theorem 9 using the aforementioned
subroutines. We also need to describe the subroutine A1, which is critical for all the
other subroutines. We shall do so inside our final algorithm for the #SAT problem for
k-PTF circuits, algorithm B. Recall that A1 has the following specifications:

Input:ANDof k-PTFs, say f1, . . . , fs specifiedbypolynomials P1, . . . , Ps respec-
tively, such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1))
variables and w(Pi ) ≤ M .

Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], fi (a) = −1}.
We are now ready to complete the proof of Theorem 9. Suppose C is the

input k-PTF circuit with parameters (n, n1+εd , d, M). On these input parameters
(C, n, n1+εd , d, k, M), we finally have the following algorithm for the #SAT prob-
lem for k-PTF circuits:

B(C,n,n1+"d ,d,k,M)

1. (Oracle Construction Step) Construct the oracle A1 as follows. Use the algo-
rithm from Corollary 13, with � chosen to be n0.1 and m to be n1/2(k+1), to
construct a deterministic linear decision tree T such that on any input w =
(coeffm,k(Q1), . . . , coeffm,k(Q�)) ∈ R

r ·� (where Qi s are polynomials of degree
at most k that sign-represent k-PTFs gi , each on m variables), T computes the
number of common satisfying assignments to g1, . . . , g�.

2. Run A5(n, d, M, n1+εd ,C,∅). For an internal call to A1, say on parameters
(n′, s, f1, . . . , fs) where n′ ≤ m and s ≤ �, run T on the input w =
(coeffn′,k(P1), . . . , coeffn′,k(Ps)) ∈ R

r ·s . (We expand out the coefficient vectors
with dummy variables so that they depend on exactlym variables. Similarly, using
some dummy polynomials, we can assume that there are exactly � polynomials.)

Lemma 30 The construction of the oracle A1 in the above algorithm takes 2O(n0.6)

time. Once constructed, the oracle A1 answers any call (with valid parameters) in
poly(n, M) time.

Proof Substituting the parameters � = n0.1 and m = n1/(2(k+1)) in Corollary 13, we
see that the construction of A1 (step 1) takes 2O(n0.6 log2 n) time. Also, the claimed
running time of answering a call follows from the bound on the depth of T given by
the proof of Corollary 13. ��

With the correctness ofA1 now firmly established, we finally argue the correctness
and running time of algorithm B.
Correctness The correctness of B follows from that of A1,A2,A3,A4, and A5 (see
Lemma 30, Theorem 22, Lemmas 25, 27, and 28 respectively). From the analysis of
A5, we see that the probability of error in B is at most 1/2.

Running Time By Lemma 28 and 30, the running time of B will be 2O(n0.6 log2 n) +
poly(n, M) · 2n−nζεd /2(k+1)

. Thus, the final running time is poly(n, M) · 2n−S where
S = nζεd/2(k+1) and where εd > 0 is a constant depending only on k and d. Setting
εk,d = ζεd/2(k + 1) gives the statement of Theorem 9.
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A Proof of Theorem 12

We need the following definition from [20].

Definition 31 (Inference from comparison queries [20].) For a finite set S ⊆ {−1, 1}n
and a vector w ∈ R

n , let infer(S, w) denote the set of all points a ∈ {−1, 1}n such
that the sign of 〈a, w〉 can be inferred from label and comparison queries on S i.e.
all queries of the form sgn(〈s, w〉) and sgn(〈s − t, w〉) respectively, where s, t ∈ S.
Formally, this means that a ∈ infer(S, w) if and only if for any w′ ∈ R

n such that
sgn(〈s, w〉) = sgn(〈s, w′〉) and sgn(〈s − t, w〉) = sgn(〈s − t, w′〉) for all s, t ∈ S,
it also holds that sgn(〈a, w〉) = sgn(〈a, w′〉). (Here, we also allow 〈s, w〉 to be 0 in
which case we use the standard definition sgn(〈s, w〉) = 0.)

Lemma 5.2 from [19] will be instrumental for us, which we restate (in a slightly
weaker form) as follows.

Lemma 32 (Weaker version of Lemma 5.2 from [19]) Suppose T ⊆ {−1, 1}r . Then
there exists a subset S ⊆ T of size |S| = � = O(r log r) (which we shall term a
‘universal’ set for T ) such that for every w ∈ R

r , |infer(S, w) ∩ T | ≥ |T |
8 .

We now begin the proof of Theorem 12.
The proof of existence of the decision tree in [19, Theorem 1.8] now proceeds

as follows: the tree consists of levels such that at each level, we have a subset T
containing those elements t of H for which sgn(〈t, w〉) has not yet been inferred. But
by Lemma 32, there is a subset S ⊆ T such that by performing label and comparison
queries on S, we can infer the signs of 〈t, w〉 for at least a constant fraction of |T |.
Assume S = {s1, . . . , s�}. The linear decision tree queries 〈si , w〉 ≥ 0 to determine
sgn(〈si , w〉) for each i ∈ [�], and then performs a comparison-based sorting algorithm
to determine the signs of each 〈si − s j , w〉 for each i, j ∈ [�]. Note that this can be
done with O(� log �)many queries of the form 〈si −s j , w〉 ≥ 0 and hence, the queries
of the linear decision tree have coefficients from {−2,−1, 0, 1, 2} as claimed. By
the definition of S, we can now infer sgn(〈t, w〉) for at least |T |/8 many t ∈ T .
We then recurse in this manner on the smaller set of elements whose signs are not
inferred, which constitutes the next level. After O(log |H |)many such levels, we have
inferred sgn(〈t, w〉) for each t ∈ H , which means we can output the truth table of
the LTF defined by w on inputs from H . This gives us a linear decision tree of depth
O(� log � · log |H |) = O(r log2 r · log |H |) as claimed.

The above description of the linear decision tree is constructive given the universal
sets S at each level. Therefore, to give an algorithm for constructing the linear decision
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tree, it suffices to give an algorithm to find these ‘universal’ sets S at each level. We
next define a subroutine F that on input T ⊆ {−1, 1}r , outputs a subset S satisfying
the conclusion of lemma 32. The basic idea of the subroutine is to cycle through all
sets S of size � and for each S, check if it is universal for the set T ; by an observation of
[20],13 this latter check can be performed efficiently (in the sense we need) by solving
a linear program.

F(T ):

1. Let � = O(r log r) as in Lemma 32. If |T | < �, simply output T . Otherwise,
proceed as follows.

2. For all S ⊆ T of size �,

(a) Let S = {s1, . . . , s�}.
(b) For each permutation π : [�] → [�], b ∈ {0, 1}�−1 and j ∈ [� + 1], do the

following.
i Solve a linear program to find a w ∈ R

r such that:

• 〈sπ(1), w〉 ≥ 〈sπ(2), w〉 ≥ · · · ≥ 〈sπ(�), w〉,
• 〈sπ(i), w〉 = 〈sπ(i+1), w〉 if and only if bi = 1, and
• 〈sπ(i), w〉 ≥ 0 if and only if i < j .

We call such a w (if it exists) (S, π, b, j)-feasible. Further, we say that (π, b, j) is
S-feasible if such a w exists and S-infeasible otherwise. If (π, b, j) is S-infeasible,
proceed to the next iteration of this loop.

ii Set I (S, π, b, j) = S.

iii For each t ∈ T \S, let β = β(S, π, b, j, t) = sgn(〈t, w〉) ∈ {−1, 0, 1}. For each
γ ∈ {−1, 0, 1}\{β}, solve a linear program to check if there is a wγ such that wγ

is (S, π, b, j)-feasible and furthermore satisfies sgn(〈t, wγ 〉) = γ. If there is no
suchwγ (for either value of γ ∈ {−1, 0, 1}\{β}), then add t to the set I (S, π, b, j).

3. Output a set S for which |I (S, π, b, j)| ≥ | |T |8 for each S-feasible (π, b, j).

Claim 33 The subroutine F outputs a set S that is universal for T .

Proof The main observation is the following. Fix any S ⊆ T of size � and (π, b) as
chosen in Step 2(b) above. For any w,w′ ∈ R

r that are (S, π, b, j)-feasible, we have
infer(S, w) = infer(S, w′) (this follows from the definition of infer(S, w) above). In
particular, the set I (S, π, b, j) computed by the algorithm in Step 2(b) is equal to
infer(S, w) for any w that is (S, π, b, j)-feasible (and not just the w chosen in Step
2(b)i.).

Now, assume that S ⊆ T of size � is not universal for T . We argue that F cannot
output S. We know there is a w ∈ R

n such that infer(S, w) < |T |/8. Fix (π, b) such
thatw is (S, π, b, j)-feasible.When the algorithm considers this (π, b, j) in Step 2(b),
it will find that I (S, π, b, j) = infer(S, w) has size less than |T |/8. Hence, this set S
will not be output by F .

13 This is mentioned in a remark [20, Page 363] on the “Computational Complexity” of their procedure.
We also thank Daniel Kane (personal communication) for telling us about this.
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By a similar argument, it follows that if S is universal, then the algorithm will
find that |I (S, π, b)| > |T |/8 for any (π, b, j) that is S-feasible. Since Lemma 32
guarantees the existence of a universal subset S of size �, the algorithm outputs such
a set. ��

Armed with the subroutine F , we can now describe the algorithm to construct the
linear decision tree for F exactly as in [19]. We give the details here for completeness.
The algorithm takes as input H ⊆ {−1, 1}r and outputs a linear decision tree T each
of whose leaves is labelled by a function v : H → {−1, 1}.

C(H):

1. Run F(H) and let S = {s1, . . . , s�} be the universal set found by F . If S = H ,

the output tree T is simply a bruteforce algorithm that queries 〈t, w〉 ≥ 0 for each
t ∈ H . Otherwise, proceed as follows.

2. Compute a linear decision tree T ′ which makes O(� log �) queries of the form
〈si , w〉 ≥ 0 and 〈si − s j , w〉 ≥ 0, and uses a comparison-based sorting algorithm
to compute (π, b, j) ∈ S�×{0, 1}�−1×[�+1] such thatw is (S, π, b, j)-feasible.

3. For each leaf λ′ of T ′, which corresponds to some (π, b, j), do the following.

(a) Compute I (S, π, b, j) as in Step 2(b) of algorithm F above. Define a func-
tion vλ′ : I (S, π, b, j) → {−1, 1} by vλ′(t) = β(S, π, b, j, t) where
β(S, π, b, j, t) is as computed in Step 2(b) of algorithm F above.

(b) Recursively call C(H\I (S, π, b, j)) to obtain a linear decision tree Tπ,b, j that
at each leaf λ′′ outputs a vλ′′ : H\I (S, π, b, j) → {−1, 1}.

(c) Append Tπ,b, j to T at leaf λ′ and relabel each leaf λ′′ of Tπ,b, j by the function
vλ′ ∪ vλ′ : H → {−1, 1}.

4. Output the tree T thus constructed.

Correctness We start by arguing that the output function v : H → {−1, 1} correctly
computes the LTF defined by w at each point t ∈ H . The proof is by induction on
the size of H . The base case, when |H | < � is trivial, since F(H) = H in this case.
We now argue the inductive case. In the proof of Claim 33 above, we observed that
for any w that is (S, π, b, j)-feasible, the set I (S, π, b, j) computed in F is exactly
the set infer(S, w). The same argument also shows that for each t ∈ I (S, π, b, j),
β(S, π, b, j, t) = sgn(〈t, w〉) for each w that is (S, π, b, j)-feasible. It follows from
this that the partial function vλ′ defined in Step 3(a) of C computes sgn(〈t, w〉) correctly
for each t ∈ I (S, π, b, j). By induction, the recursive algorithm outputs a linear
decision tree that computes sgn(〈t, w〉) correctly for each t ∈ H\I (S, π, b, j). Putting
these together, we see that the output tree T computes sgn(〈t, w〉) correctly for all
t ∈ H .

The bound claimed in Theorem 12 on the depth 	 of T follows easily, using the
fact that S is universal and hence |I (S, π, b, j)| ≥ |T |/8 for each possible (π, b, j)
corresponding to a leaf of T ′.
Running Time First let us analyze the running time of the subroutine F on a set
T ⊆ {−1, 1}r of size N . There are at most O(N �) subsets of T of size � and at most
O(��) triples (π, b, j) ∈ S�×{0, 1}�−1×[�+ 1]. Further, for fixed S, π, b, j , we run
a linear program that runs in time poly(�) for each t ∈ T . Therefore, we can bound
the total running time of the subroutine by TF (N ) := O(N �+1 · �� · poly(�)).
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The running time of C(H) can now be bounded by noting that C calls itself at
most 2O(	) times and the running time per recursive call can be bounded by �O(�) ·
poly(TF (|H |)) = (|H |�)O(�). This yields a running time of 2O(	) · (|H |�)O(�) =
2O(	).

B Proof of Lemma 15

Say f is representedby integer polynomial P with parameters (n, M). First, note that P
can be thought of as a linear function L evaluated at the point (y1, . . . , ym)where each
yi represents a monomial over xi s, of degree at most k and thus, m =∑k

i=0
(n
i

) ≤ nk .
Let this linear function be L =∑m

i=1 wi yi +w0. Let
∑

i |wi | + |w0| = W . Note that
log2(W ) ≤ M .

Now, for any r ∈ R, define the following operation:

trunc(r) =
{
�r/2� r ≥ 0

�r/2� r < 0.

Also define the linear function half(L) in the following way: half(L) =∑m
i=1 trunc(wi )yi . Using this, define the following sequence of linear functions.

L(0) = L and L(�+1) = half(L(�))

Note that L(M+1) ≡ 0 since all its coefficients are 0. The rounding procedure used
for truncating introduces errors. Define the error as follows.

err(L) =
⌈

max
y∈{−1,1}m max

�≥0

∣
∣
∣
∣
∣

L(�)(y)

2
− L(�+1)(y)

∣
∣
∣
∣
∣

⌉

Trivially, we have err(L) ≤ m. Lemma 1 from [11] characterizes the behaviour of
the series of linear functions just defined.

Lemma 34 (Lemma 1 from [11]) Define the interval T = [−2 · err(L), 2 · err(L)].
Then the following holds for all y ∈ {−1, 1}m.
1. L(�)(y) ∈ T  ⇒ L(�+1)(y) ∈ T .
2. L(�)(y) /∈ T  ⇒ sgn(L(�+1)(y)) = sgn(L(�)(y)).

Note that if L(�+1)(y) ∈ T then L(�)(y) ≥ −6 ·err(L). Thus, for any y ∈ {−1, 1}m ,
we can write

sgn(L(y))=
M∨

l=0

(
L(�+1)(y) ∈ [−2 · err(P),−1] ∧ L(�)(y) ∈ [−6 · err(P),−2 · err(P)− 1]

)

=
M∨

l=0

−1∨

i=−2·err(P)

−2·err(P)−1∨

j=−6·err(P)

(
L(�+1)(y)= i ∧ L(�)(y)= j

)
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The above represents the LTF sgn(L(y)) as an OR of ANDs of ETFs.Moreover, the
OR is adisjointOR: this follows fromLemma34which implies that there canbe atmost
one � ≤ M such that L(�+1)(y) lies in the interval [−2err(L), 2err(L)] and L(�)(y)
does not. Note that this size of the disjoint OR is at most (M+1)·O(m2) = O(Mn2k).

To finish the proof, it suffices to show that (L(�+1)(y) = i)∧ (L(�)(y) = j) can be
represented as a singleETF.DefineG(y) = L(�+1)(y)−i and H(y) = L(�)(y)− j . The
total sumof absolute values of coefficients of bothG and H is atmostW ′ = W+m+1,
using the trivial bound for err(L). Consider the ETF (W ′ + 1)G(y)+ H(y) = 0. This
is clearly equivalent to G(y) = 0∧ H(y) = 0. Also, the bit complexity of this ETF is
at most 2 log2 W

′ ≤ O(M + k log n). Now, each ETF is over the variables yi , which
themselves were monomials over xi . Thus each ETF can be thought of as a k-EPTF
over xi . This completes the proof.
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